



# Neurotoxicity Screening of Venom Components from the Philippine Cave Tarantula *Orphnaecus kwebaburdeos*

Leonardo A. Guevarra Jr.<sup>1,2,3,4\*</sup>, Cydee Marie V. Ramones<sup>3</sup>,  
Myla R. Santiago-Bautista<sup>2,3</sup>, and Leslie Michelle M. Dalmacio<sup>1</sup>

<sup>1</sup>Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila

<sup>2</sup>Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas

<sup>3</sup>Research Center for the Natural and Applied Sciences, University of Santo Tomas

<sup>4</sup>Philippine Arachnological Society, Inc.

## Graphical Abstract



## Abstract

We report the neurotoxicity of venom components of a cave-dwelling tarantula from the genus *Orphnaecus*, collected from an island in the eastern part of Luzon, Philippines. The neurotoxicity of the HPLC fractions of the venom extracted from the Philippine tarantula *Orphnaecus kwebaburdeos* was assessed based on their effects on the swimming behavior of zebrafish (*Danio rerio*) larvae and by observing larval swimming patterns. Our results show that several fractions of the spider venom altered the swimming behavior and patterns of the larvae, indicating that they are neurotoxic. Both paralysis and seizure hyperactivity were observed in larvae exposed to Fractions 2 and 3. Only seizure was observed in zebrafish larvae exposed to Fraction 7. These results suggest that several fractions of the *O. kwebaburdeos* venom contain neurotoxic components. The observed neurotoxic phenotypes may be caused by the different neurotoxic components which can further be studied.

**Keywords:** spider venom; *Orphnaecus*; Philippine tarantula; neurotoxins; zebrafish; paralysis; seizure

## INTRODUCTION

Spider venoms are comprised of bioactive molecules that can be tapped as potential sources of therapeutic agents. Spiders efficiently capture, immobilize, and kill other animals by injecting their venom and causing various neurotoxic effects in their target. The venom of spiders is composed of low molecular weight organic compounds, nucleotides, inorganic salts, free amino acids, monoamines, peptides, and proteins [1]. Generally, its neurotoxicity has been attributed to bioactive low molecular weight organic compounds and cysteine-rich peptides [2-4].

Neurotoxic peptides are perhaps the most studied among the bioactive molecules from spiders. These structurally diverse molecules have been attributed to the successful paralysis and killing of tarantula's prey [5]. Venom peptides ranging from 1 to 6 kilodaltons have been reported to bind to ion channels selectively, affecting their activities [6]. Theraphotoxin, a group of sodium ion channel binding molecules that assume an internal cystine knot (ICK) motif, is an example of these neurotoxic peptides that are reported to cause observable neurotoxic behavior in animal models [7-9].

The composition and structural diversity of neurotoxins observed within and across genera, which interestingly produces a variety of distinct toxicological effects, makes this research area a rich subject for biochemical and pharmacological research [10]. In the Philippines, for example, the very limited information on composition and bioactivity of spider venoms, particularly on the genus *Orphnaecus*, the most diverse tarantula in the Philippines, is a clear knowledge gap that needs to be addressed to harness its potential biological applications such as discovery of novel therapeutic molecules [11,12].

Zebrafish (*Danio rerio*) display many characteristics that make them suitable for evaluating the neuroactive effects of spider venom compounds. Zebrafish share many conserved receptors and neuronal architectures with humans [13]. Zebrafish larvae can be bred easily in great numbers, ideal for comprehensively screening spider venom fractions [14,15]. Before the larval zebrafish blood-brain barrier fully matures at 10 days post fertilization (dpf), penetration of pharmaceutical compounds can be observed, making exposure a viable route for screening compounds on the larval zebrafish model [16,17].

This study employed a rapid and high-throughput phenotype-based screening method using zebrafish larvae to evaluate the neurotoxicity of venom fractions of the Philippine tarantula species *Orphnaecus kwebaburdeos*.

## MATERIALS AND METHODS

**Spider Collection and Identification.** Tarantula spiders were collected from Burdeos, Polilio Island, Quezon Province, Philippines (Gratuitous Permit No. 318). The collected tarantula specimens were confirmed as *Orphnaecus kwebaburdeos* based on morphological comparison with the type specimens inspected from the University of the Philippines Los Baños Museum of Natural History collection.

***Venom Extraction and Fractionation.*** Venom extraction was performed by electrostimulation and fractionation was done following the methods described by Lopez et al. (2020) with modifications [18]. Individual tarantula spiders were placed in an air-tight container and exposed to a carbon dioxide gas stream for 3-5 minutes. The fangs were retracted and positioned for venom extraction on the brim of a 1.5 mL microcentrifuge tube, and 15 volts of current were applied to the base of the chelicerae until the venom was ejected from the fangs. Collected venoms were stored at -20 °C until use.

Venom fractionation was performed by reversed-phase high-performance liquid chromatography (RP-HPLC) using an InfinityLab Poroshell 120 EC-C18 column (4.6 x 100 mm, 2.7  $\mu$ m) attached to Agilent 1260 Infinity II Liquid Chromatography System with a diode array detector (Agilent, USA). Separation was performed with a solvent system composed of 0.1% TFA in water (Solvent A) and 0.1% TFA in 95% acetonitrile (Solvent B) using a gradient of 5% to 20% Solvent B in Solvent A from 0 to 6 minutes; 20% to 35% Solvent B in Solvent A from 6 to 11 minutes; 35% to 65% Solvent B in Solvent A from 11 minutes to 35 minutes; and 65% to 95% of Solvent B in Solvent A from 35 minutes to 44 minutes. Fractions collected were lyophilized and stored at -20 °C until use.

To quantify the amount of peptides in each fraction, fractions were reconstituted in distilled, deionized water and aliquots were taken to be tested using the Bradford assay [19]. Aliquots corresponding to the testing amount were lyophilized and reconstituted to E3 medium prior to the assay.

***Experimental Animal Care and Breeding.*** Adult wild-type adult zebrafish were purchased from a local pet shop. Prior to breeding, zebrafish were quarantined and acclimatized in chlorine-free filtered water containing 100  $\mu$ L/L 1% methylene blue solution for 28 days. Half the tank water was replaced with chlorine-free 3-5-day stock water containing methylene blue during acclimatization. Male and female fish were transferred to separate 10-liter tanks (Gendanio Biotech Inc., Taiwan) in a circulating water filtration maintained at 29 °C. The fish were fed with decapsulated brine shrimp twice daily.

Male and female zebrafish were placed in separate cells of the breeding tank (Gendanio, Taiwan) at a 2:1 male-to-female ratio the night before breeding. The acrylic boundary of the cells separating the male and female fish was removed at dawn to allow mating. The eggs were harvested, rinsed with filtered stock water, and allowed to grow in E3 zebrafish embryo medium (4.96 mM NaCl, 0.18mM KCl, 0.16mM CaCl<sub>2</sub>, and 0.40mM MgCl<sub>2</sub>) containing 100  $\mu$ L/L 1% methylene blue. The protocols used in this study were approved by the University of Santo Tomas Institutional Animal Care and Utilization Committee (UST-IACUC RC2023-100810).

**Neurotoxicity Screening.** Neurotoxicity of the spider venom fractions was assessed in 7–9 days post fertilization (dpf) larvae (n = 8 to 10 per group). Individual fish larvae were placed in a well of a 24-well microplate containing 900  $\mu$ L of E3 medium and allowed to acclimate for 30 minutes. Fish swimming was observed and recorded for 5 minutes after acclimatization. After pre-exposure observation, 100  $\mu$ L of E3 medium containing 5  $\mu$ g venom fraction was added to each well. Erratic swimming behaviors, which include paralysis, described by absence of movement or loss of gait, and seizure, characterized by whirlpool swimming and convulsive behavior, were recorded and noted as neurotoxicity phenotypes [20,21].

**Statistical Analysis.** The percentage of fish that exhibited erratic swimming behavior, such as paralysis and seizures, was computed. The proportion of fish expressing the neurotoxicity phenotype among fractions was compared to negative control using Fisher's Exact Probability Test.

## RESULTS

Reversed-Phase – High Performance Liquid Chromatography (RP-HPLC) of the crude venom collected from the Philippine cave tarantula *Orphnaecus kwebaburdeos* yielded fifteen distinct peak fractions which were collected separately, lyophilized, and used in the neurotoxicity assay in zebrafish larvae. Most of the fractions eluted between 12 minutes to 22 minutes which can be considered to be in the mid-polar fractions. Figure 1 presents the RP-HPLC chromatogram of the crude venom.

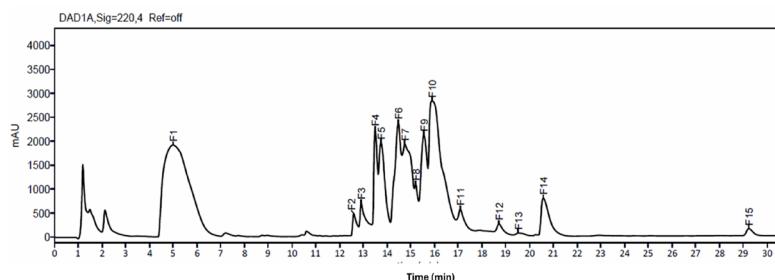
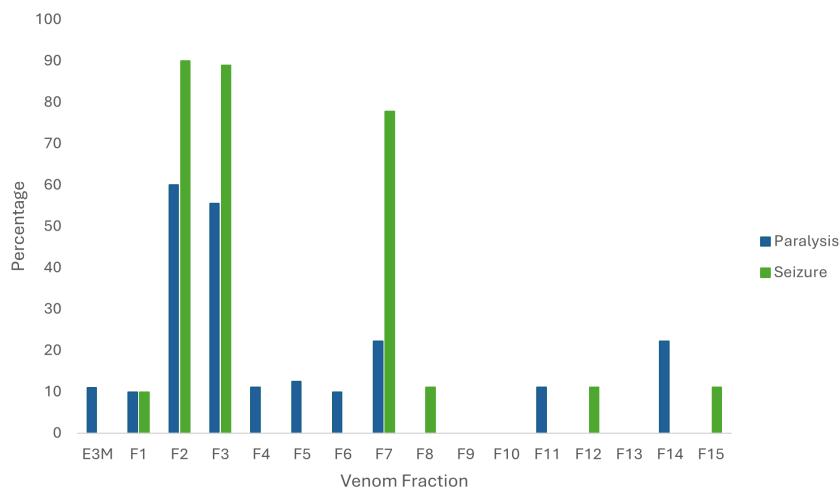




Figure 1. RP-HPLC chromatogram of Venom Extracted from *Orphnaecus kwebaburdeos*.

Paralysis and seizure, characterized by whirlpool swimming patterns, were observed in zebrafish treated with the venom fractions. The percentage of paralysis among the zebrafish treated with Fraction 2 (Rt = 12.589 min) and Fraction 3 are 55.6% and 60%, respectively. These percentages are both significantly higher than the negative control group ( $p<0.001$ ) which only had an 11.1% paralysis. Prior to paralysis, seizure was also observed in 90.0% and 89.9% of the zebrafish treated with Fractions 2 and 3, respectively which is also significantly higher compared to the control group ( $p<0.001$ ) where no hyperactivity was observed. For Fraction 7, only seizure was observed in 77.8% of larvae treated with this fraction, which is also significantly higher ( $p<0.001$ ) than the control group. Figure 2 presents the percentage of zebrafish larvae which expressed neurotoxicity phenotypes from different treatment groups.



**Figure 2.** Percentage of zebrafish larvae that exhibited neurotoxic swimming behavior.

## DISCUSSION

The majority of the bioactive components of the spider venom are neurotoxins [22]. Neurotoxic components of the venom such as low molecular weight polyamines and cysteine-rich peptides bind to metabotropic or ionotropic receptors and cause an array of effects which include paralysis or seizure [6]. When neurotoxic molecules act on the nervous system of the spider's target, they interfere with neuronal signaling and transport of ions, events that are crucial in the nerve signal transmission process in the brain [23-25].

In this study, we were able to observe the neurotoxic activities of venom fractions of the Philippine cave tarantula *Orphnaecus kwebaburdeos* in 7–9 dpf zebrafish larvae. Zebrafish larvae exposed to Fraction 2 and Fraction 3 exhibited seizure followed by paralysis while zebrafish larvae exposed to Fraction 7 exhibited seizure only after exposure to the venom fraction. These observed motor behavior impairments in zebrafish larvae, which we noted in this study as neurotoxicity behavior, are also used to assess neurotoxicity of compounds from both venom and non-venom toxins [26-28].

In zebrafish larvae, increased swimming activity, rapid darting, whirlpool-like movements, clonus-like tail beats, and convulsions followed by brief loss of posture are the common seizure swimming phenotypes observed in larvae exposed to the chemoconvulsant agent pentylenetetrazole (PTZ) [29,30]. These seizure swimming behaviors, particularly whirlpool-like movements and rapid darting, were observed in zebrafish treated with Fraction 2, Fraction 3, and Fraction 7.

Seizure is one of the effects of insect and arthropod bites [31]. Arthropod venom-associated seizures are linked to the venom component's activity towards sodium and potassium voltage-gated ion channels ( $Na_v$ s and  $K_v$ s) and regulation of synthesis and reuptake of the neurotransmitters  $\gamma$ -amino butyric acid (GABA) and glutamate [32,33]. Venom toxins induce seizure either by activation of ion channels or inhibition of ion channel inactivation [34]. BmK NT, a  $Na_v$ -activating peptide toxin from the Chinese golden scorpion *Olivierus martensi*, and tityustoxin-K(alpha) and pandinustoxin-K(alpha),  $K_v$ -blocking peptides from the Brazilian and Venezuelan scorpion from the Titiinae subfamily, are examples of arthropod venom which induces seizure by ion-channel regulation while the  $\alpha$ -dendrotoxin from the African green mamba snake *Dendroaspis angusticeps* affects release of neurotransmitters causing epileptiform movement in rats [33,35,36].

There are several molecules present in the spider venom that can cause paralysis. Phospholipase A2, a secreted component of spider and snake venom, for example, causes paralysis by hydrolyzing membrane phosphatidylcholine and phosphatidylethanolamine causing the destabilization of membrane integrity allowing calcium influx thereby increasing intracellular calcium concentration. This elevation of intracellular calcium affects the peripheral neuromuscular system dysfunction; hence, its paralytic effect [37,38]. Disulfide-rich peptides from animal venoms, an example of which is the ICK peptide VdTx-1 from the Brazilian tarantula *Vitalius dubius*, induce paralysis by blocking neurotransmitter release in the neuromuscular junction causing muscular dysfunction and paralysis in zebrafish as well as in other mammals [39-41]. Spider venom peptides, such as Aps III from the American trapdoor spider *Apomastus schlingeri*, Hm-3 from the Macedonian crab spider *Heriaeus melloreei*, and Ae1a from the African tarantula *Augacephalus ezendami* induce paralysis by inhibiting the activity of voltage-gated ion channels (VGICs) [42-44].

The two neurotoxic behavior phenotypes, paralysis and seizure, were observed successively in zebrafish larvae exposed to Fractions 2 and Fraction 3. These two neurotoxic effects, which have also been observed in animals exposed to the *Tityus serrulatus* scorpion toxin TsTx-I and the black widows *Latrodectus* species spider toxin  $\alpha$ -latrotoxin, are not only phenotypically opposite but also contrasting in terms of molecular mechanisms [45,46]. Two amino acid insertions into spider peptides from *Poecilotheria metallica* have been observed to reverse activity in NaV1.7 from activation to inhibition [47]. Both peptides eluted less in a single 1-min fraction, indicating similarity in hydrophobicity despite the 2-amino-acid difference. This effect of the spider venom on animals is evidence of the complexity of the venom's neurotoxicity. At one point, venom toxins may promote neuronal firing and glutamate release which induce seizure and hyperactivity and, at another point, it will be succeeded by paralysis which happens due to progressive failure of neuromuscular transmission caused by depletion of presynaptic vesicles [48].

## CONCLUSION

This study on the neurotoxicity of *Orphnaecus kwebaburdeos* spider venom from the Philippines provides preliminary insights into the neurotoxic activity of its components. Additional research, particularly focused on the purification and characterization of these components, is necessary to gain a comprehensive understanding of their molecular mechanisms and pharmacotoxicity. Such work is essential for the development of spider venom components as therapeutics.

## ACKNOWLEDGEMENT

The authors would like to thank the Department of Science and Technology (DOST) for providing the funding to the GAGAMBA (Gamot mula sa Gagamba at Mananaliksik ng Bayan): An Omics-guided Bioprospecting of Philippine Spiders research program; the National Research Council of the Philippines (NRCP) for providing administrative assistance in the project implementation; the Barangay Aluyon, Burdeos, Quezon and the Biodiversity Management Bureau – Department of Natural Resources (BMB-DENR) for providing the permit we needed to conduct sampling; to Mr. Darrell C. Acuña, Mr. Charles Nylxon Noriega, Mr. JD Fornillos for collecting the samples; CENRO Real, Quezon for providing the transport permit; the Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas and the Research Center for the Natural and Applied Sciences for accommodating our requests; and to Ms. Maria Mikaela Uera for helping in creating the graphical abstract.

## CONFLICT OF INTEREST

The authors declare no conflict of interest.

## AUTHOR CONTRIBUTIONS

Conceptualization, LAG, LMMD, MRSB, and CMVR; methodology, LAG and CMVR; data collection, LAG and CMVR; analysis and interpretation of data, LAG and CMVR; original draft preparation, LAG; review and editing of the draft, LAG, LMMD, MRSB, and CMVR. All authors have read and agreed to the final version of the manuscript.

## INSTITUTIONAL REVIEW BOARD STATEMENT

Protocols used in this experiment were approved by the University of Santo Tomas Institutional Animal Care and Utilization Committee.

## INFORMED CONSENT STATEMENT

Not applicable.

## REFERENCES

- [1] Guo R, Guo G, Wang A, Xu G, Lai R, & Jin H. Spider-Venom Peptides: Structure, Bioactivity, Strategy, and Research Applications. *Molecules* 2023; 29(1), 35. doi: 10.3390/molecules29010035.
- [2] Gomes PC, de Souza BM, Dias NB, Cesar-Tognoli LM, Silva-Filho LC, Tormena CF, Rittner R, Richardson M, Cordeiro MN, & Palma MS. Nigriventrine: a low molecular mass neuroactive compound from the venom of the spider *Phoneutria nigriventer*. *Toxicon* 2011; 57(2), 266-74. doi: 10.1016/j.toxicon.2010.11.021.
- [3] Gomes PC, & Palma MS. The Nonpeptide Low Molecular Mass Toxins from Spider Venoms. In: Gopalakrishnakone P, Corzo GA, de Lima ME, Diego-García E (Eds). *Spider Venoms* (Dordrecht, Netherlands: Springer, 2016, pp. 3–19). doi: 10.1007/978-94-007-6389-0\_14.
- [4] Xiong XF, Poulsen MH, Hussein RA, Nørager NG, & Strømgaard K. Structure-activity relationship study of spider polyamine toxins as inhibitors of ionotropic glutamate receptors. *ChemMedChem* 2014; 9(12), 2661-70. doi: 10.1002/cmdc.201402278.
- [5] Langenegger N, Nentwig W, & Kuhn-Nentwig L. Spider Venom: Components, Modes of Action, and Novel Strategies in Transcriptomic and Proteomic Analyses. *Toxins (Basel)* 2019; 11(10), 611. doi: 10.3390/toxins11100611.
- [6] Estrada-Gómez S, Vargas-Muñoz LJ, Segura Latorre C, Saldarriaga-Cordoba MM, & Arenas-Gómez CM. Analysis of High Molecular Mass Compounds from the Spider *Pamphobeteus verdolaga* Venom Gland. A Transcriptomic and MS ID Approach. *Toxins (Basel)* 2021; 13(7), 453. doi: 10.3390/toxins13070453.
- [7] Siemens J, Zhou S, Piskorowski R, Nikai T, Lumpkin EA, Basbaum AI, King D, & Julius D. Spider toxins activate the capsaicin receptor to produce inflammatory pain. *Nature* 2006; 444(7116), 208-12. doi: 10.1038/nature05285.
- [8] Mourão CB, Heghinian MD, Barbosa EA, Marí F, Bloch C Jr, Restano-Cassulini R, Possani LD, & Schwartz EF. Characterization of a novel peptide toxin from *Acanthoscurria paulensis* spider venom: a distinct cysteine assignment to the HWTX-II family. *Biochemistry* 2013; 52(14), 2440-52. doi: 10.1021/bi400035.
- [9] Bell J, Sukiran NA, Walsh S, & Fitches EC. The insecticidal activity of recombinant nemertide toxin  $\alpha$ -1 from *Lineus longissimus* towards pests and beneficial species. *Toxicon* 2021; 197, 79-86. doi: 10.1016/j.toxicon.2021.04.003.
- [10] Shaikh NY, Sunagar K. The deep-rooted origin of disulfide-rich spider venom toxins. *eLife*. 2023;;12:e83761. doi: 10.7554/eLife.83761.
- [11] Acuña DC, Ragasa LRP, Santiago-Bautista MR, von Wirth V, Guevarra LA Jr. Revisiting and rediscovering the tarantulas (Araneae, Theraphosidae) of Culapnitan (Libmanan) Caves in the Philippines: troglomorphism, taxonomy, phylogeny and ecological niche. *Subterranean Biology*. 2025;52:143-186.
- [12] Chaves-Moreira D, Matsubara FH, Schemczssen-Graeff Z, De Bona E, Heidemann VR, Guerra-Duarte C, Gremski LH, Chávez-Olórtegui C, Senff-Ribeiro A, Chaim OM, Arni RK, Veiga SS. Brown Spider (*Loxosceles*) Venom Toxins as Potential Biotools for the Development of Novel Therapeutics. *Toxins (Basel)*. 2019;;11(6):355. doi: 10.3390/toxins11060355.

- [13] Wolman, M.A., Jain, R.A., Liss, L. and Granato, M., 2011. Chemical modulation of memory formation in larval zebrafish. *Proceedings of the National Academy of Sciences*, 108(37), pp.15468-15473.
- [14] Levin, E.D. and Cerutti, D.T., 2009. 15 Behavioral Neuroscience of Zebrafish. *Behavior Analysis in Neuroscience*, p.293.
- [15] Kokel, D., Bryan, J., Laggner, C., White, R., Cheung, C.Y.J., Mateus, R., Healey, D., Kim, S., Werdich, A.A., Haggarty, S.J. and MacRae, C.A., 2010. Rapid behavior-based identification of neuroactive small molecules in the zebrafish. *Nature chemical biology*, 6(3), pp.231-237.
- [16] Fleming, A., Diekmann, H., & Goldsmith, P. (2013). Functional characterisation of the maturation of the blood-brain barrier in larval zebrafish. *PLoS one*, 8(10), e77548.
- [17] Fernández, J. A. A., de Moura, T. C., Vila, S. F., Gaytán, J. A. R., López-Díaz, I., Learte-Aymamí, S., Vázquez, M.E., Mayán, M.D., Sánchez, L. and Maurer-Morelli, C. V. (2025). Effects of two different peptides on pentylenetetrazole-induced seizures in larval zebrafish. *PLoS One*, 20(4), e0308581.
- [18] Lopez SMM, Aguilar JS, Fernandez JBB, Lao AGJ, Estrella MRR, Devanadera MKP, Mayor ABR, Guevarra LA Jr, Santiago-Bautista MR, Nuneza OM, & Santiago L. The Venom of Philippine Tarantula (Theraphosidae) Contains Peptides with Pro-Oxidative and Nitrosative-Dependent Cytotoxic Activities against Breast Cancer Cells (MCF-7) In Vitro. *Asian Pac J Cancer Prev* 2020; 21(8), 2423-2430. doi: 10.31557/APJCP.2020.21.8.2423.
- [19] Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *Analytical Biochemistry*. 1976;72(1-2), 248-254.
- [20] Lefebvre KA, Trainer VL, Scholz NL. Morphological abnormalities and sensorimotor deficits in larval fish exposed to dissolved saxitoxin. *Aquat Toxicol*. 2004;66(2):159-70. doi: 10.1016/j.aquatox.2003.08.006.
- [21] Wang K, Chen X, Liu J, Zou LP, Feng W, Cai L, Wu X, Chen SY. Embryonic exposure to ethanol increases the susceptibility of larval zebrafish to chemically induced seizures. *Sci Rep*. 2018;8(1):1845. doi: 10.1038/s41598-018-20288-2.
- [22] Rash, L.D. and Hodgson, W.C., 2002. Pharmacology and biochemistry of spider venoms. *Toxicon*, 40(3), pp.225-254.
- [23] Cardoso FC, & Lewis RJ. Structure-Function and Therapeutic Potential of Spider Venom-Derived Cysteine Knot Peptides Targeting Sodium Channels. *Front Pharmacol* 2019; 10, 366. doi: 10.3389/fphar.2019.00366.
- [24] Cesar-Tognoli LM, Salamoni SD, Tavares AA, Elias CF, Costa JC, Bittencourt JC, & Palma MS. Effects of spider venom toxin PWTX-I (6-Hydroxytryptargine) on the central nervous system of rats. *Toxins (Basel)* 2011; 3(2), 142-62. doi:10.3390/toxins3020142.
- [25] Zhou HJ, Xu K, Zheng PY, & Gu W. Clinical characteristics of patients with black widow spider bites: A report of 59 patients and single-center experience. *World J Emerg Med* 2021; 12(4), 317-320. doi: 10.5847/wjem.j.1920-8642.2021.04.011.
- [26] Gupta P, Khobragade SB, & Shingatgeri VM. Effect of Various Antiepileptic Drugs in Zebrafish PTZ-Seizure Model. *Indian J Pharm Sci*. 2014; 76(2), 157-63.

[27] De la Paz JF, Zambrano NO, Ortiz FC, & Llanos-Rivera A. A New Bioassay for the Detection of Paralytic and Amnesic Biotoxins Based on Motor Behavior Impairments of Zebrafish Larvae. *Int J Mol Sci* 2023; 24(8), 7466. doi: 10.3390/ijms24087466.

[28] Sofyantoro F, Septriani NI, Yudha DS, Wicaksono EA, Priyono DS, Putri WA, Primahesa A, Raharjeng ARP, Purwestri YA, & Nuringtyas TR. Zebrafish as Versatile Model for Assessing Animal Venoms and Toxins: Current Applications and Future Prospects. *Zebrafish* 2024; 21(3), 231-242. doi: 10.1089/zeb.2023.0088.

[29] Schneider SE, Pedroso J, Lima-Rezende CA, Mazon SC, Dos Santos AE, Aguiar GPS, Lanza M, Hort MA, Oliveira JV, Piatto A, Müller LG, Siebel AM. Zebrafish-based assessment of luteolin's potential in modulating seizure responses. *Front Pharmacol.* 2025 Aug 29;16:1656301. doi: 10.3389/fphar.2025.1656301.

[30] Whyte-Fagundes P, Efromson J, Vance A, Carpenter S, Bègue A, Carroll A, Doman TJ, Harfouche M, Baraban SC. Automated detection of complex zebrafish seizure behavior at scale. *Commun Biol.* 2025 Jun 5;8(1):872. doi: 10.1038/s42003-025-08310-6.

[31] Almaraz Lira JS, Chávez Haro AL. New-onset Seizure Presenting as Status Epilepticus Secondary to Venomous Poisoning and Anaphylaxis: A Case Report. *Lat Am J Clin Sci Med Technol.* 2024 Dec;6:356-359.

[32] Dorce VA, Sandoval MR. Effects of *Tityus serrulatus* crude venom on the GABAergic and dopaminergic systems of the rat brain. *Toxicon.* 1994 Dec;32(12):1641-7. doi: 10.1016/0041-0101(94)90322-0.

[33] Dorandeu F, Wetherell J, Pernot-Marino I, Tattersall JE, Fosbraey P, Lallement G. Effects of excitatory amino acid antagonists on dendrotoxin-induced increases in neurotransmitter release and epileptiform bursting in rat hippocampus in vitro. *J Neurosci Res.* 1997 Jun 15;48(6):499-506. doi: 10.1002/(sici)1097-4547(19970615)48:6<499::aid-jnr2>3.0.co;2-5.

[34] Dongol Y, Cardoso FC, Lewis RJ. Spider Knottin Pharmacology at Voltage-Gated Sodium Channels and Their Potential to Modulate Pain Pathways. *Toxins (Basel).* 2019 Oct 29;11(11):626. doi: 10.3390/toxins11110626.

[35] Zou X, He Y, Qiao J, Zhang C, Cao Z. The natural scorpion peptide, BmK NT1 activates voltage-gated sodium channels and produces neurotoxicity in primary cultured cerebellar granule cells. *Toxicon.* 2016 Jan;109:33-41. doi: 10.1016/j.toxicon.2015.11.005.

[36] Juhng KN, Kokate TG, Yamaguchi S, Kim BY, Rogowski RS, Blaustein MP, Rogawski MA. Induction of seizures by the potent K<sup>+</sup> channel-blocking scorpion venom peptide toxins tityustoxin-K(α) and pandinustoxin-K(α). *Epilepsy Res.* 1999 Apr;34(2-3):177-86. doi: 10.1016/s0920-1211(98)00111-9.

[37] Harris JB, & Scott-Davey T. Secreted phospholipases A2 of snake venoms: effects on the peripheral neuromuscular system with comments on the role of phospholipases A2 in disorders of the CNS and their uses in industry. *Toxins (Basel)* 2013; 5(12), 2533-71. doi: 10.3390/toxins5122533.

[38] Mayor ABR, Guevarra LA Jr, Santiago-Bautista MR, & Santiago LA. *Phlogiellus bundokalbo* spider venom: cytotoxic fractions against human lung adenocarcinoma (A549) cells. *J Venom Anim Toxins Inc Trop Dis* 2020; 26, e20190104. doi: 10.1590/1678-9199-JVATITD-2019-0104.

[39] Bekbossynova A, Zharylgap A, & Filchakova O. Venom-Derived Neurotoxins Targeting Nicotinic Acetylcholine Receptors. *Molecules* 2021; 26(11), 3373. doi: 10.3390/molecules26113373.

[40] Patel RN, Clare RH, Ledsgaard L, Nys M, Kool J, Laustsen AH, Ulens C, & Casewell NR. An *in vitro* assay to investigate venom neurotoxin activity on muscle-type nicotinic acetylcholine receptor activation and for the discovery of toxin-inhibitory molecules. *Biochem Pharmacol* 2023; 216, 115758. doi: 10.1016/j.bcp.2023.115758

[41] Recidoro AM, Roof AC, Schmitt M, Worton LE, Petrie T, Strand N, Ausk BJ, Srinivasan S, Moon RT, Gardiner EM, Kaminsky W, Bain SD, Allan CH, Gross TS, & Kwon RY. Botulinum toxin induces muscle paralysis and inhibits bone regeneration in zebrafish. *J Bone Miner Res* 2014; 29(11), 2346-56. doi: 10.1002/jbmr.2274.

[42] Bende NS, Kang E, Herzig V, Bosmans F, Nicholson GM, Mobli M, & King GF. The insecticidal neurotoxin Aps III is an atypical knottin peptide that potently blocks insect voltage-gated sodium channels. *Biochem Pharmacol* 2013; 85(10), 1542-54. doi: 10.1016/j.bcp.2013.02.030.

[43] Männikkö R, Shenkarev ZO, Thor MG, Berkut AA, Myshkin MY, Paramonov AS, Kulbatskii DS, Kuzmin DA, Sampedro Castañeda M, King L, Wilson ER, Lyukmanova EN, Kirpichnikov MP, Schorge S, Bosmans F, Hanna MG, Kullmann DM, & Vassilevski AA. Spider toxin inhibits gating pore currents underlying periodic paralysis. *Proc Natl Acad Sci USA* 2018; 115(17), 4495-4500. doi: 10.1073/pnas.1720185115.

[44] Herzig V, Ikonomopoulou M, Smith JJ, Dziemborowicz S, Gilchrist J, Kuhn-Nentwig L, Rezende FO, Moreira LA, Nicholson GM, Bosmans F, & King GF. Molecular basis of the remarkable species selectivity of an insecticidal sodium channel toxin from the African spider *Augacephalus ezendami*. *Sci Rep* 2016; 6, 29538. doi: 10.1038/srep29538.

[45] Teixeira VF, Conceição IM, Lebrun I, Nencioni AL, & Coronado Dorce VA. Intrahippocampal injection of TstX-I, a beta-scorpion toxin, causes alterations in electroencephalographic recording and behavior in rats. *Life Sci* 2010; 87(15-16), 501-6. doi: 10.1016/j.lfs.2010.09.007.

[46] Zhou HJ, Xu K, Zheng PY, & Gu W. Clinical characteristics of patients with black widow spider bites: A report of 59 patients and single-center experience. *World J Emerg Med* 2021; 12(4), 317-320. doi: 10.5847/wjem.j.1920-8642.2021.04.011.

[47] Yin K, Deuis JR, Dekan Z, Jin AH, Alewood PF, King GF, Herzig V & Vetter I. Addition of K22 converts spider venom peptide Pme2a from an activator to an inhibitor of Nav1. 7. *Biomedicines*, 2020;8(2):37.

[48] Barchi L. Defects in Neuromuscular Transmission Can Interrupt Normal Muscle Function. In Siegel GJ, Agranoff BW, Albers RW, Fisher SK, Uhler MD (Eds), *Basic Neurochemistry: Molecular, Cellular and Medical Aspects*, 6th edition. Philadelphia: Lippincott-Raven; 1999. Available from: <https://www.ncbi.nlm.nih.gov/books/NBK27930/>.