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Diabetes is a chronic metabolic disease with high morbidity and mortality due to its complications. 
Recently, there has been growing interest in identifying new bioactive compounds, including marine-
derived secondary metabolites, for potential antidiabetic activities. This study focuses on secondary 
metabolites from marine sponges from the genus Dysidea that show strong inhibition of protein tyrosine 
phosphatase 1B (PTP1B), a key target in antidiabetic therapy. Thirteen out of the thirty-one compounds 
were identified to have promising in silico potentials vs PTP1B: avarol (1), avarone (2), furodysin (3), 
nakafuran 8 (4), haterumadysin A (5), pyrodysinoic acid (6), avinosol (7), puupehenone (8), α-santonin 
(9), 4’-methylaminoavarone (10), 3’-methylaminoavarone (11), diplopuupehenone (12), and dysideanin 
B (13). Among these, 12 showed the highest binding energy (-7.9 kcal/mol). All 13 compounds were 
predicted to have a favorable drug-likeness and pharmacokinetic profile, except compounds 7 and 12. 
These computational findings suggest that secondary metabolites from the marine sponge Dysidea, 
particularly those with strong binding affinities and good drug-like properties, could serve as promising 
candidates for developing new generation anti-diabetic drugs and further in vitro confirmatory tests. 
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Introduction
Diabetes remains a major global health concern, with type 2 diabetes (T2D) accounting 
for over 95% of all cases worldwide [1]. In the Philippines alone, around 4.2  million cases 
of diabetes were reported and an estimated 2.3 million Filipinos were still undiagnosed 
in 2021 [2]. T2D is characterized by chronic insulin resistance and hyperglycemia, which 
can lead to severe complications affecting vital organs. Although current treatments such 
as insulin, biguanides, α-glucosidase inhibitors, and thiazolidinediones are available, 
their use is often limited by side effects like hypoglycemia and weight gain [3-4] 
highlighting the need for alternative therapies and potentially novel targets.

Protein Tyrosine Phosphatase 1B (PTP1B), a cytosolic enzyme in the PTP superfamily, 
is a promising therapeutic target due to its role in negatively regulating insulin and 
leptin signaling [5-6]. Increased PTP1B activity is associated with metabolic disorders, 
including diabetes, obesity, cardiovascular diseases, and Alzheimer’s disease. Its 
conserved catalytic motif (C(X)₅R) makes it a key modulator in signal transduction [7-
8]. Studies have shown that PTP1B knockout models exhibit protection against obesity 
and diabetes, further validating it as a drug target [9-10].

Natural products continue to be a valuable source of therapeutic agents. Marine 
organisms, particularly sponges, have been shown to contain bioactive compounds with 
anti-diabetic potential. For example, bromophenols from Rhodomela confervoides inhibit 
both PTP1B and α-glucosidase [11], while dysidine from Dysidea sp. shows strong 
PTP1B inhibition and promising therapeutic potential [12]. Other species in the Dysidea 
genus, such as D. avara, D. granulosa, and D. herbacea, produce diverse compounds 
like sesquiterpenoids and polybrominated diphenyl ethers with notable bioactivities [13-
14].

With drug discovery becoming increasingly resource-intensive, in silico approaches 
now offer efficient alternatives for early-stage screening. Structure-Based Drug Design 
(SBDD) and Ligand-Based Drug Design (LBDD) are widely used to identify and optimize 
lead compounds [15-17]. These tools have been successfully applied across various 
disease areas, including infectious [18-19], tumorigenic [20], and neurodegenerative 
diseases and disorders [21]. Several studies have also utilized in silico methodologies 
to target enzymes implicated in diabetes [22-23]. In this study, we employed in silico 
screening to evaluate marine sponge-derived secondary metabolites from Dysidea for 
their potential as PTP1B inhibitors in T2D treatment.

Materials and methods

Screening of metabolites from the genus Dysidea and ligand preparation. A total of 31 
secondary metabolites previously reported to be isolated from the genus Dysidea were 
selected. The following are the ligands used in the study: dysidine, dysidotronic acid, 
dysidenone A, furodysin, bolinaquinone, 7-deacetoxyolepupuane, avinosol, dendrolasin, 
puupehenone, dysidamide D, dicynone, diplopuupehenone, dysithiazolamide, 
dysideanin A, and dysideanin B (isolated from Dysidea sp.); avarol, avarone, α-santonin, 
4'- methylaminoavarone, and 3'-methylaminoavarone (isolated from Dysidea avara); 
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nakafuran 8, nakafuran 9, dehydroherbadysidolide, and dysideasterol F (isolated from 
Dysidea fragilis); haterumadysin A, B, and D (isolated from Dysidea cholera); arenarol 
(isolated from Dysidea arenaria); pyrodysinoic acid (isolated from Dysidea robusta); 
and isodysidenin (isolated from Dysidea herbacea) [24-30]. The marine secondary 
metabolites identified and screened from the genus Dysidea were acquired in PubChem 
(https://pubchem.ncbi.nlm.nih.gov/) and formatted in SMILES notation [31]. The 
prepared ligands were optimized and converted into SYBYL mol2 files and were added 
to the UCSF Chimera 1.15 platform [32].

Target protein preparation. The three-dimensional structure of protein tyrosine 
phosphatase 1B (PDB ID: 1T49) was acquired from the Protein Data Bank utilizing 
UCSF Chimera 1.15 platform [32]. Non-standard residues and water molecules were 
removed, and protein minimization was accomplished using the steepest descent method 
with a total of 100 steps, along with the conjugate gradient method. Charges were 
assigned using Amber’s Antechamber computation, applying Gasteiger charge mode as 
reported in previous protocols [33].

Molecular docking analysis and visualization. The prepared ligands in SYBYL mol2 
format were added into UCSF Chimera [32] with the prepared minimized protein. The 
molecules were prepared using dock prep with default configurations, and charges were 
assigned using Amber’s Antechamber computation, also utilizing Gasteiger charge 
mode. Docking was initiated using Autodock Vina 1.2.0 [34], and molecules were 
exported as “pdbqt” files. Docking simulations were performed with a grid box size of 
22.5 Å x 22.5 Å x 22.5 Å and coordinates x = 55.74, y = 33.41, and z = 24.47 for the 
location of the allosteric site using PTP1B (1T49). Visualization of the diagrams was 
carried out using BIOVIA Discovery Studio. Inhibitors with the most potential, having 
binding energies of -7.0 kcal/mol and below, were considered accepted values for the 
molecular docking results [35]. Among the 31 secondary metabolites, 13 were selected 
based on the acceptable score.

Pharmacokinetic and drug-likeness profiling. The drug-likeness based on Lipinski's 
rules of five (LRo5) was predicted using SWISSADME (http://www.swissadme.ch/
index.php). The following properties were recorded: molecular weight, number of 
H-bond acceptors, number of H-bond donors, lipophilicity, and number of violations 
based on LRo5. The BOILED-Egg (Brain Or IntestinaL EstimateD permeation) method 
was also generated to predict pharmacokinetic profiles of the compounds. The BOILED-
Egg model is a computational tool used to predict passive gastrointestinal absorption 
and brain penetration based on the lipophilicity (WLOGP) and polarity (TPSA) of 
molecules. Compounds falling within the white region of the model are predicted to be 
well-absorbed in the gastrointestinal tract, while those in the yellow (yolk) region are 
likely to cross the blood-brain barrier [36].



Lasam et al. | Acta Manilana 73 (2025)

55

Results

Molecular docking. Thirty-one selected secondary metabolites from the genus Dysidea 
were molecularly docked onto the allosteric site of protein tyrosine phosphatase 1B 
(PDB ID:1T49) (Supplementary Table S1). The top 13 compounds that crossed the -7.0 
kcal/mol threshold are shown in Table 1 and Figure 1. Five of the thirteen compounds 
exhibited hydrogen bonding along with other interactions. 

Among the screened compounds, diplopuupehenone (12) exhibited the most favorable 
binding energy of -7.9 kcal/mol. Its catechol group was involved in hydrogen bonding 
with ALA189 and pi-alkyl interactions with LEU192. However, an unfavorable 
acceptor–acceptor interaction was noted with GLU276. Following closely, avinosol (7) 
displayed a binding energy of -7.8 kcal/mol, where its alcohol moieties, attached to an 
oxolane ring, formed hydrogen bonds with ARG254, TYR20, and ASP48. Notably, a salt 
bridge was also formed between its purine structure and residues ASP48 and ARG24.

The remaining compounds exhibited binding energies ranging from -7.6 to -7.0 kcal/
mol, suggesting their potential as PTP1B inhibitors. Three compounds, namely furodysin 
(3), pyrodysinoic acid (6), and 3'-methylaminoavarone (11), recorded binding energies 
of -7.6 kcal/mol. Compound 3 did not form hydrogen bonds but exhibited several pi-
alkyl interactions between its aliphatic hydrocarbon chains and residues PHE196 and 
PHE280. LEU192 and PHE280 were involved in interactions with their ethyl moieties. 
Compound 6 engaged in multiple hydrogen bonds via its oxygen moieties with GLN262, 
GLN266, ARG221, and TRP179. It also demonstrated pi-alkyl interactions between 
its first cyclic hydrocarbon and residues TYR46, ALA217, and VAL49. Compound 11 
formed hydrogen bonds via its oxygen and hydrogen groups with ASN193 and ALA189, 
respectively. Pi-pi stacking interactions were observed between its cyclohexadiene group 
and PHE196 and PHE280, along with pi-alkyl interactions involving ethyl moieties and 
both residues.

Four other compounds, namely avarol (1), avarone (2), α-santonin (9), and 
4'-methylaminoavarone (10), showed binding energies of -7.4 kcal/mol. Compound 1 
did not exhibit hydrogen bonding but showed several pi-pi T-shaped interactions via its 
catechol group with PHE280, LEU12, and PHE16. Compound 2 formed a hydrogen bond 
through its second cyclohexenone moiety with ASN193, and pi-pi stacked interactions 
were noted with PHE280, LEU192, and PHE196. Additional pi-alkyl interactions were 
seen with the same residues. Compound 9 established a hydrogen bond through its ether 
and oxygen moieties with ASN193 and LYS197, respectively. Pi-alkyl interactions 
were also indicated with its cyclohexane moiety participating in a bond with PHE 280 
and PHE196, while its methyl moieties also bound to residues LEU192, PHE196, and 
PHE280. Lastly, the cyclohexadiene moiety of compound 10 formed a hydrogen bond 
with ASN193. Pi-pi stacked interactions were noted between its cyclohexene group and 
residues LEU192 and PHE280. Pi-alkyl interactions were also observed between the 
cyclohexane and ethyl moieties and PHE196.
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The last set of compounds, which are nakafuran 8 (4) and haterumadysin A (5), exhibited 
binding energy values of -7.1 and -7.3 kcal/mol, respectively. The lowest binding affinity 
for the experiment exhibited -7 kcal/mol for both puupehenone (8) and dysideanin B 
(13). Compound 4 exhibited only pi-alkyl interactions between its cyclohexene moiety 
and residues PHE196, PHE280, and LEU192. Compound 5 did not present any hydrogen 
bonding and only pi-alkyl interactions with PHE280, ILE281, and PHE196. Compound 
8 exhibited hydrogen bonding with GLN266 and salt bridge interactions with ARG221. 
Lastly, 13 exhibited carbon-hydrogen bonds between their hydrogen moieties and 
GLU276. Pi-pi stacked interactions were observed in the phenol, pyrrole, and hexadiene 
moieties of 13, which interacted with LEU192 and PHE280. Pi-alkyl interactions were 
also noted in the hexadiene and phenol moieties, which interacted with PHE196 and 
ALA189, respectively.

Drug-likeness parameters and BOILED-Egg pharmacokinetic predictions. To predict 
the drug-likeness in silico of the top 13 compounds based on the Lipinski rule of five, they 
were subjected to SWISSADME analysis. All compounds except compound 12 exhibited 
favorable drug likeness (Table 2). Meanwhile, based on the BOILED-Egg model, all 
compounds except 7 demonstrated favorable pharmacokinetic profiles, with predicted 
passive gastrointestinal absorption and potential blood-brain barrier penetration. These 
results support their drug-likeness and bioavailability, reinforcing their viability as lead 
compounds for further development against PTP1B (Figure 4).

Table 1. Thirteen metabolites from the genus Dysidea with high affinity to Protein Phosphatase 1B (PTP1B) and their 
interactions with the residues at the allosteric binding site.

Compound
Binding energy 

values 
(kcal/mol)

Hydrogen bond Other Interactions  
(pi-sigma, pi-stacked)

Avarol (1) -7.4 None PHE 280, LEU 192, PHE 196

Avarone (2) -7.4 ASN193 PHE 280, LEU 192, PHE 196

Furodysin (3) -7.6 None PHE 280, LEU 192, PHE 196

Nakafuran-8 (4) -7.1 None PHE 280, LEU 192, PHE 196, ALA 189

Haterumadysin A (5) -7.3 None PHE 280, ILE 281, PHE 196

Pyrodysinoic acid (6) -7.6 GLN 266, GLN 262, ARG 221, TRP 179 TYR 46, ALA 217, VAL 49

Avinosol (7) -7.8 ARG 254, TYR 20, ASP 48 CYS 215, LYS 120, ASP 48, ARG 24

Puupehenone (8) -7.0 GLN 266 ARG 221, SER 216

α-Santonin (9) -7.4 ASN 193, LYS 197 PHE 280, LEU 192, PHE 196

4'-Methylaminoavarone (10) -7.4 ASN 193 PHE 280, PHE 196

3'-Methylaminoavarone (11) -7.6 ASN 193, ALA 189 PHE 280, PHE 196

Diplopuupehenone (12) -7.9 ALA 189 PHE 280, LEU 192

Dysideanin B (13) -7.0 GLU 276 PHE 280, LEU 192, PHE 196, ALA 189
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Table 2. Drug-likeness of top Dysidea compounds according to Lipinski’s rule of five.

Discussion

Secondary metabolites are small organic compounds produced by organisms to help them 
adapt to environmental pressures, despite not being essential to primary metabolism [37-
39]. Marine sessile organisms, particularly sponges, are prolific sources of such compounds 
due to their constant exposure to intense biotic and abiotic stressors in competitive 
ecosystems [40]. Among marine organisms, sponges have attracted considerable interest 
for their chemically diverse secondary metabolites with demonstrated pharmaceutical 
properties, including antimicrobial, antifungal, and antiviral activities [41-43].

Thirteen Dysidea metabolites were reported in our results for their favorable in silico 
inhibitory activities against protein tyrosine phosphatase 1B (PTP1B), a validated 
target in metabolic disease (e.g., type 2 diabetes) and cancer therapy. Several of these, 
such as avarol (1), avarone (2), α-santonin (9), 4′-methylaminoavarone (10), and 
3′-methylaminoavarone (11), are sesquiterpenes from D. avara [24]. Looking into their 
structures and previously reported bioactivities, avarol (1) and its oxidized derivative 
avarone (2) possess a bicyclic sesquiterpene moiety that may contribute to multifunctional 
PTP1B inhibition [44]. α-Santonin (9) is noted for anti-inflammatory, antioxidant, 
immunosuppressive, and anticancer properties [45]. The methylaminoavarone derivatives 
10 and 11 show cytotoxicity and protein kinase inhibition [46]. Nakafuran 8 (4), from 
D. fragilis, features a rare bicyclodecadiene-furan skeleton with a bridgehead quaternary 
carbon, contributing to its potent PTP1B activity [47]. Haterumadysin A (5), isolated 
from D. chlorea, has a spirofused furan-bicyclononane structure and a rare spirolactol 
moiety, known for disrupting cell division [48]. Furodysin (3) and pyrodysinoic acid (6), 
from Dysidea and D. robusta, respectively, are sesquiterpenes with unique carbocyclic or 
amino acid-fused furan structures, valuable as synthetic scaffolds for drug development 
[49-50]. Avinosol (7), a meroterpenoid-nucleoside conjugate, displays anti-invasion 
activity and is the first of its kind discovered in nature [51-52]. Puupehenone (8), a 
tetracyclic drimane-type sesquiterpene, stands out due to its broad biological activities, 
including cytotoxicity, angiogenesis inhibition, and antimicrobial effects, attributed to its 
quinone-methide moiety. 

Compound MW 
< 500 g/mol

#H-bond 
acceptors 

<10

#H-bond 
donors 

<5

Lipophilicity 
MLogP<4.15

Lipinski 
violations Drug-likeness

Avarol (1) 314.46 2 2 4.39 1 Yes

Avarone (2) 312.45 2 2 3.77 0 Yes 

Furodysin (3) 216.32 1 0 3.42 0 Yes

Nakafuran (4) 216.32 1 0 3.42 0 Yes

Haterumadysin A (5) 274.35 3 0 3.28 0 Yes

Pyrodysinoic acid (6) 289.37 3 1 2.43 0 Yes

Avinosol (7) 564.67 8 4 2.28 1 Yes

Puupehenone (8) 328.45 3 1 2.98 0 Yes

α-Santonin (9) 246.30 3 0 2.38 0 Yes

4'-Methylaminoavarone (10) 341.49 3 2 3.11 0 Yes

3'-Methylaminoavarone (11) 341.49 2 1 3.11 0 Yes

Diplopuupehenone (12) 659.89 6 3 5.03 2 No

Dysideanin B (13) 242.30 1 2 1.65 0 Yes
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Figure 1. PubChem structures of the top thirteen compounds from the genus Dysidea with the highest affinity 	
                (BE > 7.0 kcal/mol) for PTP1B.
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Figure 3. 2D diagram of interactions formed between the remaining seven top-binding compounds and residues at the allosteric 
binding site of PTP1B: Avinosol (G), Puupehenone (H), α-santonin (I), 4’-Methylminoavarone (J), 3’-Methylminoavarone (K), 
Diplopuupehenone (L) & Dysideanin B (M).

Figure 2. 2D diagram of interactions formed between the top six-binding compounds and residues at the allosteric binding site 
of PTP1B: Avarol (A), Avarone (B), Furodysin (C), Nakafuran 8 (D), Haterumadysin A (E) & Pyrodysinoic acid (F).
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Its dimeric form, diplopuupehenone (12), retains similar bioactivities [53-54]. Lastly, 
dysideanin B (13), an indole alkaloid from Dysidea, shows antibacterial and moderate 
PTP1B inhibition [55]. The chemical and biological diversity exhibited by these secondary 
metabolites, particularly regarding PTP1B inhibition, highlights their potential as lead 
compounds for therapeutic development.

Enzymes have active sites for substrate binding and allosteric sites that regulate their 
activity. PTP1B, a diabetes target, has a highly conserved active site centered on Cysteine 
215, making selective inhibition difficult due to its similarity to other PTPs like TCPTP 
[5]. Active-site inhibitors also face challenges penetrating cells as they mimic negatively 
charged phosphotyrosine residues. Consequently, drug development has shifted toward 
the more hydrophobic, less conserved allosteric site, enabling safer and more selective 
inhibition, exemplified by lupane triterpenes [56-57]. X-ray studies locate the allosteric 
site about 20 Å from the catalytic site, near the WPD loop (Trp179, Pro180, Asp181), 
which shifts between an “open” (substrate accessible) and “closed” (catalytically active) 
state. Allosteric inhibitors lock this loop open, blocking catalysis [6]. Molecular docking 
on PTP1B’s allosteric site (PDB ID: 1T49) highlights key residues such as Asn193, 
Phe196, and Phe280. Compounds like α-santonin and methylaminoavarones bind mainly 
via π-π stacking, stabilized by van der Waals forces that may hinder loop movement. 
These interactions potentially disrupt the hydrogen bond network within the α3-α6-α7 
helices, which is essential for WPD loop closure and thus PTP1B activation [6, 58-61]. 
In our docking, all compounds were analyzed within a 22.5 Å cube to identify binding 
poses, confirming these critical interactions and supporting their potential as allosteric 
inhibitors that prevent the WPD loop from closing and enabling catalysis.

Figure 4. BOILED-Egg predictions showing gastrointestinal absorption and blood-brain barrier permeability 
of the top 13 compounds.
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Key residues within the hydrophobic pocket of PTP1B’s allosteric site, specifically 
LEU192, PHE196, and PHE280, are crucial for inhibitory activity (Shrestha et al., 
2019). All compounds tested in our study, except puupehenone (8), avinosol (7), and 
pyrodysinoic acid (6), interacted with PHE196 and PHE280. Notably, avarol (1), 
avarone (2), and dysideanin B (13) interacted with all three residues (LEU192, PHE196, 
and PHE280), highlighting their strong inhibitory potential. Additional residues such as 
ASN193 and GLU276 are also involved in hydrophobic interactions at the allosteric site. 
Diplopuupehenone (12) showed binding with PHE280 and GLU276, further supporting 
its potential as an effective allosteric inhibitor.

Conclusion

This study demonstrated that thirteen secondary metabolites from marine sponges of 
the genus Dysidea exhibit strong binding affinity toward the allosteric site of PTP1B, 
a key enzyme implicated in type 2 diabetes (T2D). Molecular docking of thirty-one 
distinct compounds revealed these thirteen as potential PTP1B inhibitors with favorable 
docking scores. Eleven of the thirteen Dysidea secondary metabolites have favorable 
drug-likeness and pharmacokinetic profiles in silico. The findings underscore the value 
of targeting the allosteric site of PTP1B to achieve both potency and selectivity in drug 
design. These results support further laboratory validation of the identified compounds 
as promising therapeutic candidates for T2D. Additionally, the molecular docking data 
provide a valuable foundation for prioritizing drug candidates prior to experimental 
testing.
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Supplementary Table 1. The binding energy scores of the thirty-one compounds previously isolated from the screened 

marine sponge genus Dysidea for molecular docking.

Compound Binding energy values 
(kcal/mol)

Dysidine -6.7

Avarol -7.4

Dysidotronic acid -6.6

Arenarol -6.8

Avarone -7.4

Dysidenone A -5.8

Furodysin -7.6

Nakafuran 8 -7.1

Nakafuran 9 -6.3

Haterumadysin A -7.3

Haterumadysin C -4.8

Haterumadysin D -5.1

Pyrodysinoic acid -7.6

Bolinaquinone -6.6

7-deacetoxyolepupuane -6.7

Avinosol -7.8

Dysidiolide -6.8

Dendrolasin -6.6

Puupehenone -7.0

Dehydroherbadysidolide -6.2

α-Santonin -7.4

4'-Methylaminoavarone -7.4

3'-methylaminoavarone -7.6

Dysidamide D -6.4

Dicynone -2.9

Diplopuupehenone -7.9

Isodysidenin -6.1

Dysithiazolamide -6.4

Dysideasterol F -6.9

Dysideanin A -3.9

Dysideanin B -7.0


