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Channel modeling can be used to evaluate the performance of wireless communications systems. The 
European Cooperation in Science and Technology (COST) 2100 channel model (C2CM) can reproduce the 
multiple-input multiple-output (MIMO) channels’ stochastic properties over time, frequency, and space. 
Multipath components with similar properties in delay and angles form multipath clusters. Multipaths 
have been clustered by shallow (non-deep learning) approaches over the years. The rise of deep learning 
approaches makes them good candidates in multipath clustering, but studies in this area remain rare. 
Thus, this study investigates the performance of Deep Divergence-Based Clustering (DDC) in grouping 
the multipaths from the COST 2100 dataset and measuring the performance with fourteen well-known 
shallow approaches. Ten different validation metrics evaluate the clustering results. DDC has the highest 
scores in ACC (0.3935), AMI (0.5346), and FMI (0.3102) in the semi-urban scenarios. Results indicate 
that the performance of DDC is close to the shallow clustering approaches. Thus, DDC can be used in 
clustering multipaths.
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Introduction
Fifth-generation (5G) wireless systems improve interconnecting devices' speed and 
bandwidth capability to meet the demands for new applications [1]. Since 5G wireless 
systems are expensive to build, it is crucial to evaluate their performance first [2]. 
Channel modeling evaluates the performance of wireless communications systems [3]. 
Various channel models [4–7] have been used over the years, and one of the latest is 
the C2CM [8]. COST 2100 replicates the stochastic properties of MIMO channels [9]. 
Groups of multipath components (MPCs) comprise a multipath cluster. The wireless 
channels are defined by multipath components and multipath clusters [10,11].

Clustering of multipaths has been done using different clustering approaches over 
the years [12–20]. With the advent of deep learning (DL), it has been used in image 
classification [21], object detection [22], segmentation [23], time series prediction 
[24], speech recognition [25], and clustering [26]. However, to the best of the authors’ 
knowledge, DL applications to multipath clustering problems remain rare in the literature. 
Thus, Deep Divergence-Based Clustering (DDC), a DL clustering algorithm, is applied 
in this study to cluster the COST 2100 dataset, and its performance is compared for 
the first time with the results of shallow (non-DL) clustering approaches. DDC has the 
highest scores in ACC (0.3935), AMI (0.5346), and FMI (0.3102) in the semi-urban 
scenarios. It is the most robust when applied to larger datasets.

Background and Related Studies

The growth of wireless communications systems from fourth-generation (4G) to 5G [1] 
and the planning for the sixth-generation (6G) [27] wireless systems brought forth the 
development of new technologies. Technological advancement improved the capability 
and capacity of wireless communications systems, and the upgrade in the technology 
results in a more complicated wireless network. Building the communications backbone 
takes a lot of time and resources. Hence, the correct design is a must before its construction.

Wireless channel models. Channel models characterize the propagation channel of the 
communications system that is being designed. Among the popular channel models are 
Saleh-Valenzuela (SV) [4], 3rd Generation Partnership Project (3GPP) [5], Institute of 
Electrical and Electronics Engineers (IEEE) 802.15.4a [6], Wireless World Initiative 
New Radio (WINNER) II [7], and COST 2100 [8]. Cluster-based channel models are 
widely used in MIMO channel development. An accurate channel model is vital in the 
optimal performance of MIMO systems.

Multipath clustering approaches. In C2CM, signals from the transmitter to the receiver 
propagate in different directions. MPCs with similar parameters such as delay, azimuth 
of departure and arrival, and elevation of departure and arrival are grouped in clusters. 
A clustering approach groups the MPCs in different channel scenarios to determine the 
performance of the channel model [28].
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Different clustering techniques have been used to cluster various datasets over the years. 
Among them are K-means [29], affinity propagation [30], mean shift [31], Density-
Based Spatial Clustering of Applications with Noise (DBSCAN) [32], Ordering Points 
to Identify the Clustering Structure (OPTICS) [33], and Balanced Iterative Reducing and 

Clustering Using Hierarchies (BIRCH) [34]. These non-DL clustering techniques are 
classified as shallow approaches in this study.

For multipath clustering, KPowerMeans (KPM) [12], Kernel-Power Density (KPD) 
[14], and Gaussian Mixture Model (GMM) [19] have been used. However, they were 
not applied to the COST 2100 dataset.

Recently, DL has been used to cluster various datasets. DDC [26], in particular, is applied 
in clustering images, digits, and news stories. This study looks into the feasibility of DL 
in multipath clustering. Specifically, the work aims to use DDC in clustering multipaths 
from the COST 2100 dataset and compare its performance with shallow (non-DL) 
clustering approaches.

Materials and methods

Figure 1 outlines the overall methodology of the study. The COST 2100 dataset [36] is 
clustered using fifteen clustering approaches. The clustering results are validated using 
ten metrics, and the clustering performance is then analyzed.

The COST 2100 dataset. The dataset [37] consists of two indoor and six semi-urban 
channel scenarios. Band 1 Line-of-Sight Single Link and Band 2 Line-of-Sight Single 
Link for the indoor scenarios while Band 1 Line-of-Sight Single Link, Band 1 Line-
of-Sight Multiple Links, Band 1 Non-Line-of-Sight Single Link, Band 2 Line-of-Sight 
Single Link, Band 2 Line-of-Sight Multiple Links, and Band 2 Non-Line-of-Sight Single 
Link for the semi-urban scenarios.

Figure 1. Conceptual diagram of the methodology.
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There are thirty sheets of data with a different number of multipath clusters and MPCs for 
each channel scenario. Each sheet of data has seven columns representing the parameters 
of each MPC. The parameters are the angle of departure’s whitened x-component 
(X_AOD_W), whitened y-component (Y_AOD_W), and whitened z-component 
(Z_AOD_W), the angle of arrival’s whitened x-component (X_AOA_W), whitened 
y-component (Y_AOD_W), and whitened z-component (Z_AOD_W), and the whitened 
delay (delay_W). The dataset serves as input to the clustering approaches and the ground 
truth for the validation metrics.

Clustering of the COST 2100 dataset.  The following approaches cluster the dataset: 
Deep Divergence-Based Clustering (DDC), Agglomerative Clustering-Average (AC-
Average), Agglomerative Clustering-Complete (AC-Complete), Agglomerative 
Clustering-Single (AC-Single), Agglomerative Clustering-Ward (AC-Ward), Affinity 
Propagation (AP), Balanced Iterative Reducing and Clustering Using Hierarchies 
(BIRCH), Density-Based Spatial Clustering of Applications with Noise (DBSCAN), 
Fuzzy C-Means (FCM), Gaussian Mixture Model (GMM), Hierarchical Density-Based 
Spatial Clustering of Applications with Noise (HDBSCAN), K-Means, K-Medoids, 
MeanShift, and Ordering Points to Identify the Clustering Structure (OPTICS).

DDC is a DL clustering approach, while the rest are shallow (non-DL) approaches. 
Simulations are done in Python using the Scikit-Learn library.

Evaluation of results. The results of clustering are assessed using different performance 
metrics to show how the clustering approaches fared in grouping the COST 2100 dataset. 
The validation indices are as follows:

Accuracy (ACC) – predicted set labels must exactly match the corresponding 
ground truth set labels

Adjusted Mutual Information (AMI) – the measure of the similarity between two 
labels of the same data is adjusted to account for chance

Adjusted Rand Index (ARI) – the proportion of agreement with correction for 
chance relative to the total number of element pairs 

Completeness Score (COM) – checks if all the data points that are members of a 
given class are elements of the same cluster

Fowlkes Mallows Index (FMI) – the proportion of positive agreements relative to 
the number of pairs belonging to the same cluster in one partition

Homogeneity Score (HOM) – checks if all of its clusters contain only data points 
that are members of a single class

Jaccard Score – the ratio of the intersection over the union of two label sets
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Normalized Mutual Information (NMI) – normalization of the measure of the 
similarity between two labels of the same data to scale the results between 0 and 1

Spatial Mutual Information (SMI) – a fraction of labels that are incorrectly predicted 
is subtracted from one

V-Measure (V) – the harmonic mean between homogeneity and completeness and 
is identical to NMI

The score ranges from 0 to 1. A high value indicates a good similarity between the 
ground truth and the calculated data.

Table 1. Indoor scenarios performance metric means where highest mean in bold.

ACC AMI ARI COM FMI HOM Jaccard NMI SMI V

AC-Average 0.7661 0.7743 0.6651 0.9277 0.7188 0.8559 0.5809 0.8887 0.5353 0.8887

AC-Complete 0.7758 0.7824 0.6805 0.9277 0.7276 0.8660 0.5905 0.8947 0.5316 0.8947

AC-Single 0.7399 0.7494 0.6306 0.9223 0.6940 0.8348 0.5493 0.8735 0.5312 0.8735

AC-Ward 0.8256 0.8250 0.7492 0.9400 0.7863 0.8926 0.6782 0.9146 0.6370 0.9146

AP 0.5502 0.6078 0.3787 0.9604 0.5234 0.6419 0.3055 0.7493 0.2755 0.7493

BIRCH 0.7803 0.7890 0.6892 0.9300 0.7349 0.8702 0.5985 0.8981 0.5455 0.8981

DBSCAN 0.1748 0.1578 0.0489 0.9671 0.3011 0.1419 0.0972 0.2210 0.1293 0.2210

DDC 0.7226 0.7359 0.5789 0.9416 0.6517 0.8036 0.4675 0.8658 0.3760 0.8658

FCM 0.8337 0.8269 0.7521 0.9395 0.7810 0.9029 0.6615 0.9205 0.5882 0.9205

GMM 0.8300 0.8270 0.7511 0.9415 0.7871 0.8943 0.6775 0.9162 0.6213 0.9162

HDBSCAN 0.2029 0.2251 0.0943 0.9900 0.3400 0.2095 0.1230 0.2920 0.1427 0.2920

K-Means 0.8284 0.8297 0.7533 0.9424 0.7887 0.8962 0.6801 0.9178 0.6379 0.9178

K-Medoids 0.7401 0.7178 0.6128 0.8949 0.6588 0.8464 0.5011 0.8697 0.4438 0.8697

MeanShift 0.3428 0.3108 0.1220 0.9273 0.3415 0.3420 0.1407 0.4815 0.1769 0.4815

OPTICS 0.1172 0.0272 0.0066 0.9922 0.2702 0.0246 0.0765 0.0385 0.1118 0.0385

Table 2. Semi-urban scenarios performance metric means where highest mean in bold.

ACC AMI ARI COM FMI HOM Jaccard NMI SMI V

AC-Average 0.2260 0.2356 0.0957 0.5261 0.2391 0.2571 0.1122 0.3271 0.1068 0.3271

AC-Complete 0.2772 0.3473 0.1358 0.5236 0.2379 0.3700 0.1317 0.4296 0.1123 0.4296

AC-Single 0.1630 0.1209 0.0851 0.5332 0.2545 0.1554 0.1066 0.1936 0.1086 0.1936

AC-Ward 0.3692 0.5001 0.2374 0.6087 0.2954 0.5358 0.1892 0.5694 0.1235 0.5694

AP 0.3299 0.4995 0.2306 0.6709 0.2884 0.6439 0.1589 0.6085 0.0569 0.6085

BIRCH 0.3477 0.4740 0.2039 0.5992 0.2735 0.5069 0.1636 0.5486 0.1102 0.5486

DBSCAN 0.1927 0.1955 0.0297 0.5174 0.1773 0.1958 0.0557 0.2700 0.0665 0.2700

DDC 0.3935 0.5346 0.2583 0.6419 0.3102 0.5635 0.1851 0.5998 0.0898 0.5998

FCM 0.2291 0.3143 0.1620 0.4926 0.2719 0.2890 0.1487 0.3497 0.1143 0.3497

GMM 0.3793 0.4904 0.2388 0.5902 0.2882 0.5352 0.1875 0.5610 0.1138 0.5610

HDBSCAN 0.2314 0.2932 0.0337 0.6081 0.1832 0.3108 0.0580 0.3849 0.0510 0.3849

K-Means 0.3617 0.4894 0.2327 0.5986 0.2906 0.5269 0.1863 0.5600 0.1213 0.5600

K-Medoids 0.3804 0.5000 0.2678 0.5911 0.3042 0.5687 0.1905 0.5796 0.0988 0.5796

MeanShift 0.1190 0.0905 0.0160 0.4452 0.1963 0.1058 0.0500 0.1660 0.0579 0.1660

OPTICS 0.1533 0.1624 0.0094 0.6461 0.1926 0.1342 0.0469 0.2088 0.0566 0.2088
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Performance analysis. The performance of the clustering approaches is analyzed 
based on accuracy, factor identification, and robustness. The validation indices give the 
accuracy of the clustering algorithms. The Analysis of Variance (ANOVA) assesses the 
validity indices, which serve as a statistical measure in comparing the significance of the 
results.

On the other hand, factor identification discovers why a particular clustering result is 
obtained. Lastly, robustness looks into the consistency of the clustering performance 
across all channels. A robust clustering approach performs consistently well in the eight-
channel scenarios. The standard deviation of the validity indices evaluates the robustness 
of the clustering approaches.

Results and Discussion

The clustering results are evaluated using clustering accuracy, factor identification, and 
robustness.

Accuracy. The performance metric means for the indoor scenarios are shown in Table 
1, while that of the semi-urban scenarios are presented in Table 2. The present work 
uses ten metrics for validating the clustering performance compared to just one or two 
in existing studies. K-Means has the highest score in five metrics in indoor scenarios. 
These are AMI (mean = 0.8297), ARI (0.7533), FMI (0.7887), Jaccard (0.6801), and 
SMI (0.6379). K-Means performs well when the dimension and the number of clusters 
are low. On the contrary, AP leads in four metrics in semi-urban scenarios. These are 
COM (mean = 0.6709), HOM (0.6439), NMI (0.6085), and V (0.6085). DDC has the 
highest score in the three metrics. These are ACC (mean = 0.3935), AMI (0.5346), and 
FMI (0.3102). DDC’s good performance validates that DL approaches can be explored 
in clustering multipaths. The two clustering approaches tend to perform better when the 
number of multipaths and the number of clusters are increased. The COM metric has 
the best scores generated by the clustering approaches with a mean of 0.9430 for indoor 
scenarios and 0.5729 for semi-urban scenarios since it looks at the completeness of data 
in a cluster, while SMI is the least for all the channel scenarios with a mean of 0.4189 
for indoor scenarios and 0.0926 for semi-urban scenarios due to high results that have 
incorrect data labels.

Factor identification. The clustering approaches performed better in indoor scenarios, as 
shown by the higher means in table 1 than in Table 2. This outcome is the consequence of 
having lower number of MPCs and multipath clusters in indoor scenarios. The number of 
MPCs ranges from 11 to 80 and the number of clusters from 4 to 27 in indoor scenarios. 
Moreover, the semi-urban scenarios have MPCs ranging from 458 to 1781 and more 
clusters from 14 to 66.
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Robustness. The clustering approaches’ box plots in indoor scenarios are shown in 
Figure 2. K-Means is the most robust since it registers the highest mean (red horizontal 
bar). The mean metric scores of the clustering approaches are significantly different 
since the p-value is 1.4229 x 10-22, which is less than the significant level of 0.05. These 
results show that the clustering approaches have different performances in clustering the 
multipaths.

Figure 3 presents the clustering approaches’ box plots in semi-urban scenarios. DDC 
is the most robust since it has the highest mean (red horizontal bar). This result shows 
that DDC performs better than the other clustering approaches when applied to larger 
datasets. This outcome further points to the possibility of applying DL approaches 
in clustering multipaths. The p-value is 5.7569 x 10-5, indicating that the clustering 
approaches' mean metric scores are significantly different. This value validates the 
difference in the performance of the clustering approaches.

Figure 2. Box plots of the clustering approaches (horizontal axis) vs. the metric score (vertical axis) in indoor scenarios.

Figure 3. Box plots of the clustering approaches (horizontal axis) vs. the metric score (vertical axis) in semi-urban scenarios.
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Conclusion

The work presents the performance of DDC and fourteen shallow approaches in 
clustering the COST 2100 dataset using ten validation metrics. Results show that DDC’s 
performance is comparable with that of the shallow approaches. Furthermore, DDC has 
the best scores in ACC with a mean of 0.3935, AMI whose mean is 0.5346, and FMI with 
a mean of 0.3102 in the semi-urban scenarios. With the promising results manifested by 
DDC, DL approaches can be explored as alternatives in clustering multipaths.
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