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Infrared spectroscopy is a standard method in analytical chemistry that transforms the vibration of atoms 
in a compound into images. In the mid-infrared (MIR) spectral region extending from 4,000-400 cm-1, 
the chemical, structural, and compositional information of a molecule, regarded as its fingerprint region, 
in the solid, liquid, and gas phases can be deduced. Fourier transform infrared (FTIR) spectrometers 
are predominantly used over conventional dispersive instruments because modern computer technology 
allows real-time, fast Fourier transform algorithms. This study explored the utility of gas-phase Fourier 
transform infrared spectroscopy for the chemometric differentiation of aromatic rice. The seven cultivars 
Basmati, Dinorado, Jasmine, Milagrosa, NSICs Rc148, Rc342, and Rc344 were characterized by different 
infrared patterns. Agglomerative Hierarchical Clustering (AHC) generated clusters that define the rice’s 
similar characteristics. Correspondingly, Principal Component Analysis (PCA) was able to precisely 
classify the samples into different varieties (≈99%). The results demonstrated that chemometric analysis 
of FTIR spectrograms can be a reliable technique and has a high potential to discriminate aromatic 
rice samples based on their infrared fingerprints. The study provided a possible inexpensive and non-
destructive alternative that has not been explored before to assess the authenticity of rice varieties through 
an existing analytical platform.
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Introduction
In the fields of agriculture and food science, the demand for quality assurance and precise 
differentiation of agricultural products has grown exponentially. Among these products, 
rice, considered as a staple food for nearly half of the global population, is often a 
target of adulteration [1]. The market for specialty rice, particularly aromatic cultivars 
has expanded due to their distinctive flavors, fragrances, and cultural significance. As 
consumer preferences continue to evolve, the need for rapid and accurate methods to 
differentiate these rice varieties becomes increasingly crucial.  

Traditional methods for distinguishing rice cultivars involve time-consuming and often 
subjective procedures, such as visual inspection and sensory analysis [2,3,4]. However, 
advancements in analytical methods have paved the way for more modern techniques. 
One such technique, gas-phase Fourier Transform Infrared (FTIR) spectroscopy, has 
emerged as a powerful tool for qualitative and quantitative analysis of organic compounds 
[5]. FTIR spectroscopy exploits the characteristic vibrational modes of molecular bonds 
to produce unique spectral fingerprints that can differentiate substances.

Using gas-phase FTIR spectroscopy to discriminate aromatic rice cultivars offers several 
advantages over conventional methods. This non-destructive technique requires minimal 
sample preparation and provides real-time results, enabling rapid and high-throughput 
analysis. By targeting specific chemical functional groups within the rice samples, such 
as carbohydrates, lipids, and proteins, FTIR spectroscopy can capture intricate variations 
in molecular compositions among different cultivars.

To harness the potential of FTIR spectroscopy for aromatic rice differentiation, 
chemometric approaches play a pivotal role. Chemometrics, the applications of statistical 
and mathematical techniques to chemical data, enables the extraction of meaningful 
information from complex spectroscopic datasets [6,7]. Multivariate statistical analyses, 
such as Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA), 
allow the visualization of patterns and relationships within the data, aiding in classifying 
rice cultivars based on their chemical profiles.

In this context, this study explores the feasibility of using gas-phase FTIR spectroscopy 
coupled with chemometric techniques to differentiate aromatic rice cultivars. By 
analyzing the unique spectral signatures generated by FTIR, combined with advanced 
data processing methods, it becomes possible to achieve accurate and rapid discrimination 
among different varieties of aromatic rice. Such an approach holds significant potential 
for enhancing the quality control of rice products and supporting agricultural practices 
by enabling better cultivar management and traceability.

Materials and Methods
Rice Samples. Three in-bred cultivars of the Mabango series (NSIC Rc148, NSIC Rc342, 
and NSIC Rc344) obtained as hulls from the Philippine Rice Research Institute and 
International Rice Research Institute, and traditional Philippine aromatic rice varieties 
Dinorado and Milagrosa, and imported varieties, Basmati and Jasmine, purchased from 
the market, were studied. Three packs of every rice variety were mixed and homogenously 
divided into three laboratory-scale samples (1 kg each) and stored in air-tight containers. 



Chemometric differentiation of aromatic rice cultivars using gas-phase Fourier transform

121

Static Headspace Generation. Generation of headspace volatiles was conducted one 
hour before analysis. In brief, a 50-mL glass vessel with a two-hole cover containing 
10 g of rice was purged with nitrogen gas for two minutes. A 50-mL syringe filled 
with nitrogen was attached to one hole of the cover while the other hole was sealed. 
The system was allowed to equilibrate for an hour at room temperature. The generated 
headspace was collected using another syringe through the other hole.  

Gas-Phase Fourier Transform Infrared Spectroscopy.  Analysis was carried out on an 
FTIR spectrometer (Shimadzu IR Prestige-21) equipped with a deuterated L-alanine-
doped triglycemic sulfate detector. The generated headspace collected was transferred 
into a 100-mm short path EC gas cell (Pike Technologies) with a 25-mm x 4mm KBr 
window using a syringe.  The FT-IR spectra were recorded continuously from 400 – 4000 
cm-1 with a resolution of 2.0 cm-1. These spectra were automatically baseline-corrected.  
Moreover, a spectral atmospheric correction was applied to remove the background 
signals due to water and carbon dioxide. Each sample was measured thrice and the 
averaged, baseline, and background corrected spectrum was utilized for chemometric 
analysis.    

Chemometric Analysis. Clustering is a technique of arranging and classifying components 
based on their similar characteristics in space. This results in high homogeneity among 
related groups and high heterogeneity among distinct groups. It assumes that the samples 
having similar numerical values will move closer to each other in space and thus would 
lie in areas with high proximity. This similarity is measured based on the distances of 
different data points with zero distance being perfectly related and represented by clusters. 
The most common type of clustering, AHC, was used in this study. This technique has 
been applied in discriminating varieties based on multi-element analysis of rice [7,8].

The large spectral dataset was transformed into small uncorrelated variables using PCA. 
Each variable, known as the principal component, is a linear combination regarded as a 
compressed representation of the original spectral data obtained by reducing the number 
of dimensions without much loss of information based on similarities and differences. 
Accordingly, when four or more variables are measured, data visualization becomes 
possible through various plotting systems [9]. While the whole spectral range may 
establish groupings, it is better to process the data and remove principal components that 
are highly correlated to avoid redundancy.  

Both AHC and PCA analyses were performed using the XLSTAT software package 
(Addinsoft, USA). The PCA was processed using the wavenumber and peak area as 
variables and intensities, respectively.  
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Results and Discussion

Headspace generation. Static headspace sampling is a simple method carried out 
manually with a syringe that aims to establish equilibrium between the volatiles that 
a food material contains and those in the vapor phase above it. For this purpose, the 
food sample must be allowed to reach an equilibrium within a given time. In this study, 
rice samples in sealed glass containers were allowed to equilibrate at room temperature 
for one hour before the headspace was collected and transferred to the FTIR sample 
cell using a syringe. The headspace sample was kept small to avoid changes in sample 
characteristics due to sampling. In fact, Aganda et al. [10] observed a decrease in the total 
absorbance in the spectra when the sample weight was increased. Because of this, the 
method is unlikely to be successful for determining concentrations lower than or equal 
to parts per million range. Thus, the data was more useful in untargeted metabolomics or 
fingerprinting employing chemometric techniques.

Since the data was intended for untargeted metabolomics, varying the temperature for 
headspace generation was not investigated. In previous studies on headspace generation 
using an electronic nose, it was observed that volatile components of rice naturally 
stem out of the grains in a few minutes without heat application [11,12]. These volatile 
compounds have low molecular weight and are in gas form at room temperature. Indeed, 
despite the minimal contents of volatile compounds in rice, 2-acetyl pyrroline (2AP) 
and hexanal, can be easily perceived by the human olfactory system whose scents are 
indicative of whether the consumer accepts or rejects the samples.

Spectral Features of Aromatic Rice. A characteristic signature of chemical substances 
that are present in the rice samples featuring molecular vibrations such as stretching and 
bending in particular regions is provided by FTIR. Figure 1 shows the normalized FTIR 
spectra of the different rice varieties. Each spectrum contains a multitude of bands that 
exemplify the characteristic fingerprint of aromatic rice samples.  

Figure 1. FTIR spectra of in-bred, traditional & imported rices in the mid-infrared region (4000-650 cm-1).
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The region from 3600-3000 cm-1 shows a broad vibrational band relating to –OH groups 
from carbohydrates, amide, and alcoholic structures and from moisture in the samples. 
Signals corresponding to the primary components of the atmosphere such as water and 
carbon dioxide were shown at 3525 cm-1 and double-peak at 2300 cm-1, respectively. 
The sharp signal range around 2017 cm-1 arises from the stretching vibrations of –NCS 
bonds from isothiocyanite while the signal range from 1784-1687 cm-1 corresponds to 
the bending of –CH bonds arising from overtones of aromatic compounds. These results 
support our earlier study wherein an electronic nose sensor for sulfur compounds was 
instrumental in differentiating the aromatic rice samples [13].

The spectral range encompassing peak 1535 cm-1 relates to the secondary structure of 
proteins [14,15]. A medium signal at 1385 cm-1 signifies the bending of –CH bonds 
from aldehydes. Peaks below 1000 cm-1 could be from the bending of mono- and di-
substituted alkenes or structures mostly related to carbohydrates [16].

 The spectra illustrate bands associated with the main groups of organic molecules present 
in the samples. Table 1 presents the major peak ranges of rice samples captured from the 
spectra with their corresponding functional group vibrations and their probable sources.

Figure 2. Dendogram of cluster analysis (Cluster I – Mabango 2 (L), Cluster II – Dinorado (N), Mabango 4 	
        (C), and Mabango 5 (K), Cluster III – Milagrosa (F), Cluster IV – Jasmine (J) and Basmati (B))

Table 1. Major bands of rice samples, functional groups, and probable sources.

Frequency (cm-1) Functional group vibration Probable source
3700 – 3584 O-H stretching Alcohol
2140 – 1990 N=C=S stretching Thiocyanate
2000 – 1650 C-H bending Aromatic compound
1745 C=O Ketone 
1550 – 1500 N-O stretching Nitro compound
1390 – 1380 C-H bending Aldehyde
1420 – 1330 O-H bending Alcohol
995 – 985

C=C bending Alkene 
730 – 665 
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Based on the spectra, major organic volatiles believed to be present in the rice samples 
were alcohols, ketones, aldehydes, sulfur, and aromatic compounds. Differentiations of 
rice using electronic noses have suggested that these major compounds are present in 
rice [10,17] while gas chromatographic studies conducted on rice volatiles substantiate 
the presence of these compounds in most rice varieties [18,19,20]. 

Although the spectral curves in Figure 1 showed the same patterns, the absorbance of 
the inbred varieties was relatively higher than the others. This could be due to the fresh 
nature of the in-bred samples being kept as rough rice before the analysis. However, 
overlapping points manifested in the fingerprint region (1500-650 cm-1). No observable 
differences were seen that can indicate that the rice samples can be identified directly 
from the figure. To resolve this, spectral differentiation was conducted.

Agglomerative Hierarchical Clustering Analysis and Rice Classification. AHC was 
done to identify the natural groupings of the varieties based on their Euclidian distance. 
The resulting dendrogram, presented in Figure 2, illustrates four clusters. The first 
cluster consists of an in-bred variety (Mabango 2). The second cluster consists of 2 
inbred varieties (Mabango 4 and 5) and Dinorado. Cluster three consists of Milagrosa 
while the fourth cluster includes the imported varieties Basmati and Jasmine. It shows 
further that the dissimilarity between the two in-bred rice varieties in Cluster 2 was very 
small while those between the imported rice varieties was almost zero.

Principal Component Analysis and Dimension Reduction. PCA was performed for 
exploratory data analysis to identify natural clustering according to similarities and 
differences of the aromatic rice samples from the three groups that could influence the 
subsequent multivariate classification.

The variable plot of the PCA utilizing seventeen wavenumber ranges discriminated 
98.55% of the samples (Figure 3a). Reducing this range to ten resulted to a non-significant 
decreased rate of discrimination (Figure 3b).   

Figure 3. Discrimination rate from PCA using a) seventeen and b) ten wavelength ranges
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By looking at the plot of scores generated by PCA using the ten wavelength ranges 
presented in Figure 4, qualitative recognition of different groups of samples was allowed. 
The figure shows the scatter plot of the first two Principal Components (F) for the seven 
aromatic rice samples, which together account for 98.48% of the total variability. Three 
groups can be suggested based on the distribution of samples along Principal Component 
1 (F1). First, imported rice samples, Basmati and Jasmine rice, together with Milagrosa 
had negative F1 scores. Second are the two in-bred rice varieties NSIC Rc342 (Mabango 
4) and NSIC Rc344 (Mabango 5), and Dinorado having positive F1 and F2 scores. 
Third, NSIC Rc148 (Mabango 2), although with a positive F1 score, has a negative F2 
score. The F1 accounted for 82.97% of the total variation compared to the 15.51% posed 
by Principal Component 2 (F2). This indicates that the majority of the contributions to 
the pattern separation are contributed by F1.  

Conclusion

Gas-phase FTIR spectroscopy coupled with chemometric data analysis demonstrated its 
effectiveness in differentiating aromatic rice varieties. Unsupervised pattern recognition 
techniques depicted obvious clustering of aromatic rice varieties in the AHC dendrogram 
and PCA plot. Both AHC and PCA provided clear discrimination of each aromatic 
rice variety from the others. The results show the efficiency of the gas-phase FTIR in 
differentiating the local and imported aromatic rice varieties and imply its potential 
utility in identifying aromatic rice. 

The gas-phase FTIR is a rapid, non-destructive, and cost-efficient option to assess 
aromatic rice quality. The technique has potential uses for fast screening of analysis of 
aromatic rice varieties. However, it needs to be accompanied by established rice quality 
analysis for critical inspections of suspected fraudulent rice samples.

Figure 4. DPCA biplot of seven aromatic rice varieties.
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