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Glycosylation is a molecular process known to occur in lipids and proteins. Until recently, a new class of 
non-coding RNAs called glycoRNAs was discovered using bioorthogonal chemistry approaches. In this 
review paper, fundamental concepts in traditional RNA biology and glycobiology are reviewed. From the 
conventional way of studying RNA biology which is centered on its functions, structures, regulation, and 
synthesis, recent studies on RNA are now shifting to epigenetics and omics, especially its influence on 
disease pathogenesis and the process itself of post-transcriptional and post-translational modifications. In 
the study of glycobiology, recent investigations are centered on the pathophysiological relevance of the 
process of glycosylation. The discovery of glycoRNAs moves forward research on both RNA biology and 
glycobiology starting again from basic science. It establishes the foundation of future scientific endeavors 
which aims to clarify and answer unclear concepts such as glycoRNA trafficking within cells and the fate 
of glycoRNAs in the extracellular space. We also highlighted in this paper the promising potentials of 
glycoRNAs in both molecular diagnostics and therapeutics against autoimmune diseases.
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Introduction
Glycosylation is a well-known process in cell biology where sugar moieties covalently 
bind to a polypeptide chain thereby inducing post-translational modification. This 
process is both established to occur in lipids and proteins. Until recently, ribonucleic acids 
(RNAs) have been discovered to functionalize with sugar moieties thus coining the term 
“glycoRNAs” [1]. In this paper, the once separate yet adjacent worlds of RNA biology 
and glycobiology are bridged through comprehensive discussion of this breakthrough. 
To synthesize the impact of the discovery of glycoRNAs to the field of cell and molecular 
biology, fundamental concepts in RNA biology and the process of glycosylation are 
reviewed followed by an extensive discussion of the paper highlighting the newly 
discovered glycoRNAs. This review paper encompasses concepts in RNA biology that 
are deemed necessary to grasp the importance of the discovery of glycoRNAs.

Molecular Biology of RNA. Ribonucleic acid (RNA) is a type of nucleic acid which 
utilizes deoxyribonucleic acid (DNA) template for protein synthesis. While it is well-
established in the study of the central dogma of life that DNA is responsible for carrying 
genetic information, DNA itself still requires transcription into RNA to enable gene 
expression [2,3]. Thus, it is thought that RNA is more ancient that DNA. According to 
the RNA world hypothesis, RNA is the first “genetic blueprint” of life on Earth which 
descends from ancient microbes capable of RNA-dependent replication known as 
ribocytes [4]. RNA still works independently as a genome in the present time as observed 
in some viruses like human immunodeficiency virus (HIV) and influenza [5].

Due to the reliance of RNA to its parent DNA template for its synthesis, there is an 
overlapping set of bases for both nucleic acids. However, the clear difference between 
the two is that RNA uses uracil as one of its four bases instead of thymine in DNA. 
Thymine provides DNA greater chemical and structural stability than uracil and is used 
by DNA in repair of genetic damage. Despite the more unstable nature of RNA, it has a 
variety of functions that maintain the normal physiology and biochemistry of cells (Table 
1) [6,7].

RNAs can be classified into three main types depending on its function in protein 
synthesis: messenger RNA (mRNA), transfer RNA (tRNA), and ribosomal RNA 
(rRNA) [16] RNAs can also be divided into much broader classifications depending on 
its coding capability: the coding RNA (cRNA) and noncoding RNA (ncRNA). cRNAs 
are composed of mRNAs [7,17]  (Figure 1). Meanwhile up to 85% of the human genome 
is transcribed into RNA and is known as the transcriptome [18]. However, a large 
proportion of the transcriptome is composed of ncRNAs. In humans, there is a 47:11 
ratio of ncRNA to cRNA. Meanwhile, the ratio for mice is 43:1 and 2.4:1 for Drosophila 
melanogaster [19,20]. Despite this difference in proportion, the abundance of ncRNAs is 
well-established across species and this prompted several RNA biologists to investigate 
them and their role in regulating gene expression [21-24].



The Much-Awaited Bridge: Connecting the Worlds of RNA Biology and Glycobiology

52

The ability of the RNA to fold into diverse structural entities gives it several functions 
in the cell. There are three hierarchical levels of RNA structural organization. Figure 
2 provides a systematic workflow of how RNA molecules form structures starting 
from the primary to the tertiary structure in comparison with DNA structures. The key 
difference between DNA and RNA is observed in the secondary structure. Tertiary 
structure does not occur in DNA molecules [6,25-27]. Due to the ability of RNAs to fold 
into tertiary structures, RNA can interact with other biological molecules such as other 
RNA molecules, DNA and proteins. These RNA-associated interactions are involved 
in several physiological and cellular processes like cell growth, cell differentiation, and 
apoptosis [28]. For example, mRNA-miRNA interactions yield mRNA degradation while 
tRNA-mRNA interaction results in amino acid synthesis [29-31]. RNAs can also provide 
catalytic activities in ribozymes. The ability of RNA to bind metal ions, its unique bases 
which can accept and donate protons, and the presence of 2’-OH groups on RNA ribose 
also contribute to its enzymatic properties [32-34].

In the era of transcriptomics, studies have been focused on RNA editing or RNA 
modifications with over 140 types of RNA modification [35]. The usual 5’ cap and 
3’ poly(A) tail modification of mRNA has been extensively investigated and sparked 
research on post-transcriptional modifications. Due to the role of these modifications in 
RNA functioning, structural stabilities, and correct biogenesis, other primary classes of 
RNA modifications have been identified in the last 20 years which include adenosine 
methylation, cytosine modifications and editing, ribose modifications, adenosine 
methylation, and cytidine acetylation [36-39]. Through studies on post-transcriptional 
modifications, the role of RNA in the regulation of protein synthesis and gene expression 
via splicing, translation, and decay has been clearer and more accepted in the scientific 
community [40]. In addition to this wide array of chemical modifications of the 
ribose group and RNA nucleosides, the team of Flynn and colleagues [1] discovered 
glycosylation in RNA molecules which expands current RNA epigenetic studies.    

Functions of RNA Examples of cellular and 
physiological processes References

RNAs are carriers of genetic 
information instead of DNAs.

Entirely RNA genomes of some viral classes
RNA as genetic material in evolutionary studies
mRNAs in the central dogma 

[8]

RNAs can have recognition functions 
through base pairing.

splice site recognition
snoRNAs and substrate rRNAs
miRNAs and corresponding mRNAs

[9,10]  

 

RNAs have catalytic properties. Ribozymes [11]
   

Specific shapes correspond to docking 
functions.

RNA-induced interactions between ribosomal 
subunits and between RNA aptamers and ligands

[12,13] 
   

Large ribonucleoprotein complexes are 
built through scaffolding RNAs.

Spliceosome 
Signal recognition particles and ribosomes

[3,14] 
  

RNAs can be templates for nucleotide 
synthesis.

Telomerase RNAs as templates for DNA synthesis
 

[15]

Table 1. Functions of RNAs and some examples in cellular and physiological processes. 
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Glycans and the Process of Glycosylation. Glycans or carbohydrate-based polymers 
(polysaccharides) are produced by all living organisms. These are biomolecules 
essential in structure, energy storage and regulatory purposes at the cellular and systems 
level [41]. Glycans are arguably the most abundant and diverse polymers among the 
four basic constituents of cells [42]. Seven monosaccharides assemble to synthesize 
glycans: fucose, sialic acid, glucose, mannose, galactose, N-acetylglucosamine, and 
N-acetylgalactosamine. Fucose and sialic acid occur at the terminal ends of glycan 
chains and attach to hydroxyl groups present in the protein [43].

The glycome, the entirety of sugar moieties in an organism, is so diverse with different 
types of oligosaccharides and glycoconjugates with a myriad of linkages and sequences 
involved in the binding. Amidst this chemical and biochemical diversity among glycans, 
glycoconjugates have some similarities in their terminal modifications and structural 
scaffolds [44]. The differences meanwhile are thought to be the result of eukaryotic 
evolution due to molecular cues and the need for regulatory processes [45-46].

Figure 1. Classification and systematics of RNA. Abbreviations: Coding RNA (cRNA); Non-coding 	               	
                RNA (ncRNA); Transfer RNA (tRNA); Ribosomal RNA (rRNA); long ncRNA (lncRNA); 		
                small ncRNA (sncRNA); Competing endogenous RNA (ceRNA); 			 
                trans-acting RNA (transRNA); small nuclear RNA (snRNA); small nucleolar RNA (snoRNA); 	
                small-interfering RNA (siRNA); microRNA (miRNA).
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The covalent attachment of these glycans to other macromolecules like proteins and 
lipids is called glycosylation. In proteins, glycosylation is the most abundant and second 
most studied post-translational modification after phosphorylation [47].  Most eukaryotic 
proteins synthesized in the ribosomes undergo this process via N-linked glycosylation 
to asparagine residues or O-linked glycosylation to serine and threonine. Protein 
glycosylation is a complex cellular process that undergoes several biochemical steps 
either through non-enzymatic reactions (glycation) or with enzymes. The earlier involves 
a reaction between aldehyde glucose with amino acid residues lysine and arginine to 
stimulate the production of advanced glycation end products which are implicated in 
several pathological and physiological processes like aging, cancer, and [47-48]. The 
enzymatic protein glycosylation or simply glycosylation requires sequential steps in 
the secretory pathway (endoplasmic reticulum and Golgi bodies), nucleus, cytoplasm, 
and mitochondria. The process employs an estimate of 200 glycosyltransferases [49-
50]. Glycosylation amplifies the proteome through synthesis of several proteoforms 
with diverse properties which equate to a wide array of functions [51-53].  Despite this 
diversity, glycosylation pathways are still considered similar among mammalian systems 
except for some eliminated glycan features through gene inactivation and as observed in 
xenoantigens [54-56].

Through thermodynamics analysis, glycosylation has been found to stabilize proteins by 
reducing the integrity of unfolded proteins [57]. For example, N-glycosylation allows 
correct protein folding into its three-dimensional form thereby promoting biological 
functions like cell signaling and cell-cell communication [58-59]. Glycosylated proteins 
are also more stable and have longer half-lives after N-linked glycosylation which 
prevents glycoprotein deamidation [60-62]. Furthermore, protein glycosylation also 
influences protein degradation and trafficking [63].

Figure 2. Systematic workflow of the three levels of structural organization in (a) DNA and (b) RNA. 	
                Both primary structures of DNA and RNA are linearly arranged sequences of nucleotides.    	
                DNA secondary structure features a stable double helix with the aid of positively charged (+)  	
                molecules. Secondary structures of RNA are due to double-stranded RNA helices. Only RNA  	
                forms a tertiary structure after folding and packing the helices.
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Glycosylation can influence ligand-receptor interactions which consequently affect signal 
transduction. Thus, glycosylation is implicated in pathophysiology of several diseases. 
Sialylation (sialic acid-binding) promotes the development of galectin-1 dependent 
anoikis resistance among tumor cells by combining with and eventually switching off 
the signal of a glycan receptor [64].  Sialylation and fucosylation (fucose-binding) 
of glycosylation-dependent cell adhesion entities promote lymphocyte homing [65]. 
Glycans can also be antigenic where blood-group antigens are produced by residues 
bound to sialic acid and fucose [66-67].

Glycosylation is also associated with multidrug resistance. Acute myeloid leukemia 
cells may develop chemotherapy resistance after binding to endothelial E-selectin 
receptors via glycosylation induced by sialyl-transferase and [68-69]. N-glycosylation 
modifications may promote cancer malignancy through the CD63 protein which recruits 
receptor tyrosine kinases to integrins and kinases belonging to the Src family [70]. 
Glycosylated CD63 proteins are known to possess drug resistance [71].

Discovery of GlycoRNAs. As stipulated in the discussions above, glycosylation typically 
occurs on proteins, lipids and glycans itself [72-73]. RNA-targeted glycosylation is 
uncommon although there have been studies investigating glycosylation-associated 
ncRNA. In the study of Flynn et al. [1], RNAs are directly incorporated into the world 
of glycans and thus they coined the term “glycoRNAs”. GlycoRNAs are members of 
ncRNAs but with a distinct overrepresentation of Y RNAs and small nucleolar RNA 
(snoRNA). Y RNAs are constituents of Ro6 ribosomal nucleoproteins while snoRNAs 
are well-documented in post-transcriptional modifications [74-75]. RNA glycosylation 
was investigated using biorthogonal chemistry techniques developed by the Bertozzi 
laboratory [76]. Azido-sugars were utilized to visualize and trace sugar moieties and 
glycoconjugates [77]. In the study, it was found that PNGase F, an enzyme which 
catalyzes the cleavage of linkage between asparagine residues and the N-linked 
glycans specifically the proximal N-acetylglucosamine, can digest glycoRNAs. Thus, 
RNA glycosylation uses an amide bond for its linkages. The authors confirmed that it 
is RNA that interacted with cellular glycans through biotin reactivity tests of labeled 
cells, which was reversed by treatment with RNAse. Furthermore, these glycoRNAs are 
highly fucosylated and sialylated. However, RNA nucleobases do not have amide linkers 
thereby suggesting potential modifications among precursors of these nucleobases to 
resemble asparagine structure and function in glycosylation.

Evidence suggests that glycoRNA glycans are similar to protein glycans in terms of 
their structures. Despite unclear biosynthetic pathways of glycoRNA, enzymes which 
function in its synthesis are comparable and may be similar to enzymes involved in 
the synthesis of N-glycans such as transferases. Transferases, which are key enzymes 
participating in protein glycosylation, may shed light to these similarities between 
RNA and glycans found in glyco-RNAs. Only N-glycosylation enzymes can control 
glycoRNA biosynthesis and N-glycans are the only glycan structures on glycoRNAs. 
These enzymes are localized in both ER and Golgi bodies [78-80]. Meanwhile, small 
ncRNAs occur at the cytosol and its modification-inducing enzymes are in the lumen 
of ER and Golgi bodies. This suggests potential translocation of small ncRNAs to the 
location of these enzymes to synthesize glycoRNAs.
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The study also found that these glycoRNAs localize to the cell membrane. To reach 
the cell surface, glycoRNAs rely on the secretory pathway. With glycoRNAs at the cell 
surface, their roles in cell-to-cell communication and interactions by acting as ligands 
to target receptors on other cells and chemical moieties might be pathophysiologically 
important. The recent discovery of Flynn and colleagues proposed that glycoRNAs 
may serve as ligands for Siglec receptors therefore glycoRNAs might have significant 
functions in immune signal transduction. Siglec receptors are immune receptors for 
autoantibodies thus highlighting its medical importance especially in autoimmune 
diseases like systemic lupus erythematosus [81].

Prior to discovery of glycoRNAs, the relationship between glycans and RNA has long 
been investigated. However, it is the first time to confirm that glycans bind to RNAs. 
For the past decades, glycosylation-associated ncRNAs have been the focus of scientists 
who try to bridge RNA biology and glycobiology as well as elucidate their medical 
relevance. Glycosylation-associated ncRNAs and glycoRNAs are two different fields and 
studies on the earlier paved the way for the discovery of the latter. These glycosylation-
associated ncRNAs function to influence and alter protein glycosylation patterns, 
regulate the enzymatic activity of glycosyltransferase, and control glycan-associated 
protein expression. For instance, lncRNA SNHG7 has been found to be a competing 
endogenous RNA that cleans RNAs from the microRNA (miRNA) 34a family thereby 
inhibiting the binding of N-acetylgalactosamine to these miRNAs. This phenomenon 
leads to cancer proliferation and metastasis [82]. These ncRNA-associated glycans are 
not directly bound to ncRNAs. The first report of ncRNA-glycan linkage yields a new 
and distinct class of ncRNA – the glycoRNAs.    

Future Directions of the Discovery . In terms of the medical relevance of glycoRNAs, 
the role of glycoRNAs in immunotherapy is now becoming the emphasis of current 
studies. GlycoRNAs may serve as serum markers for autoimmune diseases. RNA 
modifications through glycosylation are reported to be sensitive to immunotherapeutic 
armamentarium thus glycoRNAs may also be good therapeutic targets. Alteration of 
glycan structures in glycoRNAs may influence epigenetic mechanisms involved in the 
development of lesions in systemic lupus erythematosus [83]. GlycoRNAs may be the 
next signal receiver of immune responses to chemotherapeutic drugs in addition to 
protein receptors.

Other than the potential medical importance of glycoRNAs, the study also provided a 
new set of research concepts for future studies. The process of translocation of ncRNAs 
into the ER lumen and the movement of the glycoRNAs via secretory pathway remain 
unclear. Cargo complexes involved in glycoRNA trafficking from RNA synthesis in 
the nucleus to its end destination, which is the cell surface, need to be elucidated. The 
mechanism of anchoring of glycoRNAs at the cell surface and its high specificity to this 
location may also be investigated. Lastly, future studies on the fate of these glycoRNAs 
at the cell surface, whether they are endocytosed or simply released and dissolved 
extracellularly, might strengthen its medical relevance.          
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Conclusion

The recent discovery of glycoRNAs paved the way for the establishment of a new class 
of ncRNAs. GlycoRNA, which is formed via direct linkage between N-glycans and 
ncRNAs, is the answer to the missing bridge between RNA biology and glycobiology. 
The difference between glycosylation-associated RNA and glycoRNA is that the earlier 
are RNAs involved in the process of glycosylation while the latter is the RNA itself 
being glycosylated. Both have medical importance but glycoRNAs might potentially be 
both a molecular diagnostic marker and therapeutic target for autoantibody diseases in 
the future. Despite the limitation of glycoRNAs in mammalian cells, the discovery may 
allow scientists to use glycoRNA data in studying traditional RNA biology, the process 
of glycosylation and glycobiology, as well as the recent trends in glycomics, and other 
omics workflows in cell and molecular biology. 
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