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The emergence of novel and re-emergence of latent infectious diseases coupled with rising cases of 
antimicrobial resistance necessitates the continuous search for new antibiotics. The Kingdom Fungi has 
been at the centerpiece of any drug discovery program ever since the beginning of the antibiotic era. 
The key strategy is to find novel taxa and/or ecologically defined fungal groups for the screening of 
bioactive secondary metabolites. In this paper, we presented the endolichenic fungi as promising fungi for 
bioprospecting. We searched for published papers on these fungi and presented reports of their biological 
activities. Through this paper, we hope to increase interest on these microorganisms among natural 
product researchers.
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Introduction
The current COVID-19 pandemic has made it known the enormous danger of 
communicable diseases brought about by infectious entities. According to the World 
Health Organization (WHO), of the ten leading causes of death in 2019, three are 
communicable diseases [1]. This number increased to four among the lower-middle 
income countries and to six among low-income countries. Among these communicable 
diseases, bacterial infection such as tuberculosis tops the list. This is further aggravated 
by the rise of antimicrobial resistance (AMR). In 2019, an estimated 10 M were infected 
with TB worldwide, with more than 200,000 cases reported with multi-drug resistant 
TB [2]. The Philippines is among the eight countries with 30 high TB burden, which 
accounted for 87% of new cases. WHO has thus identified AMR as among the top 10 
global public health threats. This coupled with the declining effectivity of anti-infective 
drugs available in the market necessitates the continuous exploration of bioactive 
metabolites for drug discovery. In this mini-review paper, we described lichen-associated 
microorganisms as promising sources of potentially novel and bioactive metabolites for 
drug discovery development.

Lichens: a partnership of more than two organisms. Lichens are mutualistic association 
between a filamentous fungus, also referred to as the mycobiont, and at least one 
photosynthetic partner, known as the photobiont, which could either be a green alga, 
a cyanobacterium or both [3]. Lichenization is described as a mechanism of acquiring 
fixed carbon by fungi from a population of minute, living algal and/or cyanobacterial 
cells [4]. In this lichenization process, the mycobiont, or the lichen-forming fungus 
which often belongs to the Phylum Ascomycota, overgrow the photobiont on or within 
the substratum to form the lichen thallus [5], a unique vegetative structure. While the 
photobiont provides nutritional benefits (e.g., sugars) to the association, the mycobiont 
provides a “shelter” and facilitates absorption of water from the environment. As 
a result of this symbiotic relationship, both the mycobionts and the photobionts can 
exist in various habitats, where separately they would be rare or non-existent [6]. In 
this context, lichens are regarded as the most successful symbiosis in the natural world. 
They comprise more than 20% of the global fungal biodiversity [7], and exist in almost 
all terrestrial habitats, from the tropics to polar regions including extreme environments 
such as extremely dry deserts [6]. In the Philippines, a total of 1,234 lichen species has so 
far been recorded, of which 307 species or equivalent to 24% of the recorded taxa were 
first described from specimens collected in the country [8]. This represents an enormous 
diversity from which bioactive metabolites for drug discovery can be explored. Our 
studies on Philippine lichens at the UST Research Center for the Natural and Applied 
Sciences have shown their antimicrobial, cytotoxic, and herbicidal potentials [9-12]. 
However, despite their promising bioactivities, lichens grow very slowly which raises 
concerns of over-collection, leading to species population decline and possible species 
extinction. The in vitro culture of its mycobionts may not always be a good option as the 
lichen-forming fungi may not necessarily produce the bioactive metabolites extracted 
from the lichen thalli. Interestingly, the lichen-forming fungi are not the only organisms 
within the lichen association that can be explored for natural products. 
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Lichens are described for its intricate architecture, the lichen thalli, which involves 
the fungal component sheltering the photosynthetic partners [13]. Although the dual 
nature of lichens is widely recognized for centuries, the unexpected discovery of a 
basidiomycetous yeast, identified as Cyphobasidium sp., from the cortex of the lichen 
Bryoria [14] led to the recognition of the “third” symbiont. The yeast cells are embedded 
in the cortex of the lichen thallus and may contribute significantly to its morphology. 
The yeasts are also ubiquitous, having been reported over large geographical distances 
and across the six continents, and therefore, are believed to be essential partners for 
most lichens and are not casual colonizers or parasites. Interestingly, recent studies also 
showed the presence of bacteria which provides vitamins and cofactors in the lichen 
thalli [15-17]. These led Hawksworth & Grube [18] to re-define the lichen symbiosis 
as “a self-sustaining ecosystem formed by the interaction of an exhabitant fungus and an 
extracellular arrangement of one or more photosynthetic partners and an indeterminate 
number of other microscopic organisms.” These also showed the enormous diversity 
of microorganisms from different kingdoms and domains of life entering the lichen 
symbiosis.

In the study of Arnold et al. [19], they earlier concluded that lichens could be the ‘cradle’ 
of fungal diversification. True enough, the discovery of Endolichenic Fungi (ELF) as 
another microbiota living inside healthy lichen thalli without causing any infections to the 
host is recently reported. Described as similar in functions or roles to plant endophytes but 
represented a lineage of Ascomycota distinct from the lichen mycobiont, lichenicolous 
fungi, and other incidental fungi found on the surface of the thalli, endolichenic fungi 
represent another ecologically defined group of microorganisms within lichens [19-21]. 
ELF have been reported to occur in taxonomically diverse lichens encompassing various 
lichen growth forms (e.g., crustose, foliose, fruticose), substrates (e.g., epiphytic, 
saxicolous, terricolous), and ecosystems (e.g., boreal, temperate, tropical, and Antarctic) 
[22-24]. In the next section, we describe the possible role/s of endolichenic fungi in the 
lichen association. 

Endolichenic fungi (ELF) and their role in the lichen symbiosis. Investigations on 
the nature of endolichenic fungi have progressed in the recent years – from learning 
the similarities of these microorganisms with plant endophytic fungi to the production 
of unique and bioactive secondary metabolites. There are, however, other biological 
aspects of these group of asymptomatic fungi that require further studies. Among these 
is the identification of their role/s in the lichen symbiosis to gain significant insights for 
the better understanding of their diversity and occurrence as well as their physiological, 
functional, and ecological nature. Previous studies have attempted to identify these roles 
of ELF, albeit most were only based on comparison with the lifestyle of plant endophytic 
fungi, also known as fungal endophytes. Fungal endophytes reside within tissues 
of plants and have been shown to exhibit antimicrobial and cytotoxic activities. For 
example, we have reported bioactivities of fungal endophytes associated with terrestrial 
plants [25], mangroves [26-28], and even macroalgae [29-31]. Suryanarayanan and 
Thirunavukkarasu [32] further hypothesized that ELF, like plant endophytes, aid in the 
abiotic and biotic stress tolerance of their lichen hosts, influence the gene regulation and 
alteration of the fitness of the host lichen, and perhaps be involved in the degradation of 
the dead parts of the lichen thalli. 
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Similarly, Zhang and colleagues [24] reported the possible functional role of ELF in 
litter degradation, since their isolated ELF species were previously reported as plant 
endophytes that exhibited such role in leaf decay. Now, just like fungal endophytes 
from plants, the bioactive secondary metabolites produced by ELF were also explored. 
Kellogg and Raja [33] reported that ELF species produce a suite of biologically active 
and functional secondary metabolites, in exchange for the shelter provided by the host 
lichen. These metabolites were hypothesized to provide chemical protection for the 
host [34]. Galinato et al. [35] recently reported that ELF could be leading producers of 
antioxidants within the lichen thalli, since ELF crude culture extracts exhibited stronger 
antioxidant activities than the crude lichen extracts. Similar results were reported by 
Santiago et al. [36]. It is, thus, possible that ELF protects the host against harmful 
conditions through the production of reactive oxygen species (ROS). Furthermore, 
Santiago and colleagues [37] recently reported that ELF metabolites may have protected 
the lichen from other possible harmful or invading microorganisms. Such assumption 
resulted from the metabolomics analyses of lichen hosts and their associated ELF, where 
a distinction between lichen and ELF metabolic profiles was observed.

While these studies may have provided ample information on the role of ELF in the 
lichen symbiosis, additional analyses involving various lichens and ELF are still required 
to understand the complexity of endolichenism. Furthermore, there are other significant 
observations in these studies that also require attention. For example, ELF is considered 
analogous to plant endophytic fungi. While this observation was proven accurate by 
several studies [19, 38-41], the nature of the secondary metabolites of ELF could have 
been different from those produced by plant endophytes. It is worth noting the ability of 
fungal endophytes to produce metabolites similar to their plant hosts [42]. However, in a 
recent metabolomics analyses conducted [37], different set of metabolites was observed 
between ELF and their lichen hosts, thereby indicating possibly a different role for ELF, 
and a role perhaps distinct from that of the fungal endophytes. Proving this observation 
by conducting more extensive analyses will aid in identifying the role of ELF in the 
lichen symbiosis, particularly from the perspective of ELF.

ELF and drug discovery. Since the first isolation of bioactive secondary metabolites 
produced by ELF in 2007 [43], a continuous natural product exploration on the potential 
of ELF in drug discovery followed. In a relatively short period of time, there has been a 
plethora of research where ELF metabolites and their biological activities are reported. 
To show this growing trend, we conducted a simple journal search using Google Scholar 
on June 23, 2021, using only one keyword, endolichenic fungi. We read through more 
than 800 hits and selected only journal articles that reported endolichenic fungi and 
their bioactivities, and that were published in reputable journals. Our simple search 
strategy is illustrated in Figure 1. Our study resulted in the identification of varied 
bioactivities of ELF, and included but not limited to antibacterial [37, 44-46], antifungal 
[47-50], antioxidant [35, 51-54], cytotoxic [43, 55-59], anti-inflammatory [60-62], 
anti-Alzheimer’s disease [63, 64], antiviral [65], and anti-biofilm [66-68] (Figure 
2, Table 1). From these studies, a total of 592 compounds was reported, with half of 
these metabolites identified as novel (Figure 3). This observation alone is sufficient to 
prioritize endolichenic fungi for chemical diversity studies. 
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Interestingly, in addition to the biopharmaceutical applications mentioned above, 
some of the ELF metabolites were also tested for their agricultural potential such as 
nematicidal [69], biocontrol [70], and phytotoxic activities [71, 72]. In the Philippines, 
the first reports of ELF were that of Galinato et al. [35], Santiago et al. [36], and Tan 
et al. [44]. Galinato and colleagues isolated 11 morphologically distinct ELF from the 
fruticose lichen, Ramalina peruviana, collected in Tagaytay City, Cavite Province. 
Their ELF showed antioxidant activities, with three species reporting higher % RSA 
than the lichen host and the positive control, ascorbic acid [35]. On the other hand, 
Santiago et al. [36] isolated ELF from another fruticose lichen, Usnea, specifically, from 
U. baileyi, U. bismolliuscula, and U. pectinata, all collected from Sagada, Mountain 
Province. Their studies also reported the antimicrobial and antioxidant activities of 
ELF, with many isolates exhibiting better activities than the lichen hosts. Tan et al. 
reported the biodiscovery of antibacterial constituents from three endolichenic fungi 
isolated from the foliose lichen Parmotrema rampoddense, with the isolation of three 
compounds: bis(2-ethylhexyl)terephthalate, acetyl tributyl citrate, and fusarubin [44]. 
Acetyl tributyl citrate also exhibited moderate antibacterial activity against Klebsiella 
pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus. With the recent 
listing of more than 1,200 Philippine lichens and with 307 species described as novel 
from specimens collected in the country [8], it is now easy to imagine the high diversity 
of our endolichenic fungi and their enormous potential for bioprospecting.        
 

Figure 1. A simple search strategy for the screening of journal articles on endolichenic fungi. 

Figure 2. The reported biological activities exhibited by the metabolites produced by ELF. Data are based 
from 97 publications searched through Google Scholar on June 23, 2021, with the keyword 
“endolichenic fungi”. Papers were published from 2007 until May 2021. The category “others” 
refers to uncommon biological activities such as heat shock activation, allelopathic, anti-algal, 
biocontrol, anti-proliferative, α-amylase inhibition, anti-quorum sensing, anti-migratory (wound 
healing), and glucose-uptake.
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Strategies for the biodiscovery of novel bioactive metabolites from ELF. While several 
bioactive and novel secondary metabolites were discovered from different ELF species, 
none have so far reached the next stage in the drug discovery pipeline. Numerous in 
vitro investigations have been conducted confirming the efficacy of these secondary 
metabolites, but very few studies have continued to the development of these bioactive 
compounds. For example, Lagarde et al. [73] reported the strong cytotoxic activities 
of ELF crude extracts against human cancer cell lines. Such results are promising, 
but the isolation and characterization of these bioactive compounds are yet to be 
determined. Though, there are several reports on the isolation, characterization, and 
structure elucidation of ELF metabolites [60, 74-76], most of which also demonstrated 
interesting bioactivities. As such, it is strongly encouraged to continuously explore these 
microorganisms, gathering more information beyond the first few steps of laboratory 
routines (i.e., preliminary screening) and continue throughout the drug discovery process.

One of the main concerns in the drug discovery research is the re-isolation of known 
compounds. While a higher chance of getting novel metabolites is expected from novel 
species, endolichenic fungi, many of which are taxonomically similar with fungal 
endophytes, may have produced less chemically diverse compounds. Therefore, strategies 
to maximize the chemical diversity and biological activities of ELF are needed, which 
in turn are also very useful in the whole drug discovery pipeline. Among these strategies 
is the OSMAC or “one strain, many compounds” approach. It is a simple yet effective 
strategy that aims to increase the number of secondary metabolites produced by a target 
microorganism by altering the fermentation conditions, such as media composition, 
temperature, pH, aeration, and addition of enzymes [77]. 

Figure 3. Number of published scientific articles on the bioactivities of endolichenic fungi. Included here are 
the number of isolated ELF metabolites and those identified as novel compounds from 2007 until 
May 2021 based on 97 publications obtained from our journal search through Google Scholar on 
June 23, 2021, with the keyword “endolichenic fungi”.
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Wang and colleagues [78] applied such strategy to the ELF Ulocladium sp. inhabiting 
Everniastrum lichen. This then led to the isolation and characterization of more ELF 
metabolites exhibiting strong cytotoxic activities. Likewise, Padhi and Tayung [79] 
observed more ELF metabolites with varying bioactivities by altering the culture media 
and incubation parameters.

Another strategy to further maximize the chemical and biological diversity of ELF 
metabolites is the exploration of structure-activity relationship, albeit still uncommon 
in the field of endolichenism. Wijeratne and colleagues [80] applied such strategy to 
two strains of the ELF Geopyxis sp. that yielded analogues of the novel metabolites 
geopyxins. Preliminary structure-activity relationship screening of these analogues, 
however, showed low cytotoxic and heat-shock-inducing activities, suggesting that these 
substances may be weak anticancer drugs. 

Table 1. Listing of bioactive secondary metabolites produced by endolichenic fungi. The host lichens and the 
types of bioactivities are also indicated with the reference journals.

Lichen Host Endolichenic Fungi Bioactive Secondary 
Metabolites Bioactivities References

Amandinea medusulina Xylaria psidii
(Z)-3-{(3-acetyl-2-hydroxyphe-
nyl) diazenyl} -2,4-dihydroxy-
benzaldehyde

Cytotoxic Santhirasegaram et 
al. [73]

Cetrelia sp. Aspergillus sp. Isocoumarindole A Antifungal, Cytotoxic Chen et al. [74]

Everniastrum nepalense Chaetomium globosum Chaetoglobosin Y, E, G, B, C, 
Isochaetoglobosin D Cytotoxic Zheng et al. [59]

Everniastrum sp. Ulocladium sp.
Tricycloalternarenes 9b, 
6-O-methylnorlichexanthone, 
norlichexanthone, griseoxan-
thone, alterlactone, altenusin

Antibacterial, Anti-
oxidant, Cytotoxic

Wang et al. [75], 
Wang et al. [76]

Lepraria incana Aspergillus chevalieri Asperglaucin A, Asperglaucin B Antibacterial Lin et al. [77]

Lethariella zahlbruckneri Tolypocladium cylindrosporum Pyridoxatin Cytotoxic Li et al. [78]

Lobaria retigera Aspergillus versicolor
8-O-methylversicolorin A, 
8-O-methylversicolorin B, 
8-O-methylaverythin, 1’-O-eth-
yl-6,8-di-O-methylaverantin

Cytotoxic Dou et al. [79]

Parmelia sp. Eupenicillium javanicum Javanicol E, (+)-terrein Anti-inflammatory Xu et al. [61]

Parmotrema rampoddense Fusarium proliferatum Acetyl tributyl citrate Antibacterial Tan et al. [44]

Parmotrema sp. Daldinia eschscholtzii 8-methoxynaphthalen-1-ol Radical scavenging 
activity

Manthrirathna et 
al. [54]

Parmotrema sp. Penicillium citrinum
10-ethylidene-2,4,9-trimethoxy-
10,10a-dihydro-7,11-dioxa-ben-
zo[b]heptalene-6,12-dione

Antioxidant Wickramarachchi et 
al. [53]

Parmotrema tinctorum Lecythophora sp. Oxaspirol B Cytotoxic Wijeratne et al. [80]

Physciaceae physcia Ophiosphaerella korrae Ophiosphaerellin C Anti-Alzheimer’s 
Disease Li et al. [81]

Ramalina sp. Myrothecium inundatum
Myrotheols A and B, Myrothe-
sides C and D, Sphaeropsidin A, 
Hymatoxin L

Cytotoxic Basnet et al. [82]

Stereocaulon tomentosum Dothideomycetes sp. Dothideopyrone F Cytotoxic Kim et al. [83]

Umbilicaria sp. Ulospora bilgramii Ulosporin G Cytotoxic Xie et al. [84]

Usnea cavernosa Corynespora sp.
Corynesporol, 1-hydroxydehy-
droherbarin, herbarin, dehydro-
herbarin, naphthoquinone

Cytotoxic Paranagama et al. 
[43]

Xanthoparmelia an-
gustiphylla Talaromyces sp. Talaromycin A Cytotoxic, Antioxidant Yuan et al. [85]

Xanthoria sp. Aspergillus sp. Asperunguisin C Cytotoxic Li et al. [58]
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Despite that, such observation gave an insight regarding the target selectivity of the 
compounds and may instead provide broader anticancer drugs with different modes 
of action. It therefore serves as an opportunity to further explore the structure-activity 
relationship for the development of better drug leads. The success of ELF in drug 
discovery research lies with the high probability of discovering new compounds. This is 
also expected to increase, since more countries have started exploring this ecologically 
important group of microorganisms (Figure 4). Furthermore, the use of asymptomatic 
endolichenic fungi can serve as alternative target organisms, especially when conservation 
of the host lichens owing to their very slow growth is considered.

Conclusions 
Fourteen years into the study of endolichenic fungi, only about 97 publications were 
reported. However, despite this meager number as compared to other fungal groups, a 
diverse list of bioactivities was known from these microorganisms. These have shown 
the enormous potential of this unique, ecological fungal group for bioprospecting. In 
the Philippines, only a handful of studies reported endolichenic fungi, mainly from the 
lichen genus Usnea and Ramalina. 

With more than a thousand species of lichens reported in the country, a quarter of 
which are described first in the Philippines, these represented many potential hosts for 
endolichenic fungi, and expectedly may harbor unique, if not, novel species of fungi 
awaiting to be discovered and screened for fungal natural products, and thereby are 
very good candidates for drug development programs. We only need to explore our own 
backyard for these promising microbes.

Figure 4. Geographic locations of the lichen hosts where the metabolite-producing ELF were isolated. 
Numbers indicate the number of published papers for each country where the host lichen was 
collected. Data are based on 95 publications obtained from our Google Scholar journal search on 
June 23, 2021, with the keyword “endolichenic fungi”. Papers were published from 2007 until May 
2021. Two articles did not indicate the origin of the lichen hosts, and thus, were excluded from the 
graph.
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