ISSN: 0065-1370

Acta Manilana

journal homepage: https://actamanilana.ust.edu.ph/

Phytochemistry and Pharmacology of Guettarda speciosa L.

Ryan Karlo K. Ramos¹, Jameson A. Eusebio^{3,4}, Grecebio Jonathan D. Alejandro^{1,2,3}, and Mario A. Tan^{1,2,3*}

¹College of Science, University of Santo Tomas, Manila, 1015, Philippines
²Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila, 1015, Philippines
³The Graduate School, University of Santo Tomas, Manila, 1015, Philippines
⁴College of Allied Sciences, De La Salle Medical and Health Sciences Institute, City of Dasmariñas, Cavite 4114 Philippines

Guettarda speciosa L. (Rubiaceae), commonly known as zebra wood or sea randa, is a shrub mainly found on coastal areas of tropical countries. Its leaves, stem, and bark are extracted using various solvents and used as anticholinergic and as treatments for inflammations, colds, cough, wounds, epilepsy, and postpartum infection. This review paper highlights the phytochemical constituents and biological activities of *G. speciosa*.

Keywords: *Guettarda speciosa*; Rubiaceae; medicinal plant; ethnomedicinal plant; phytochemical; pharmacological activity

Corresponding author: matan@ust.edu.ph DOI: https://doi.org/10.53603/actamanil.71.2023.sgko3881 Date Received: 01 March 2022 Date Accepted: 16 January 2023

©2023 The Authors. Published by the Research Center for the Natural and Applied Sciences, University of Santo Tomas Manila, The Philippines

INTRODUCTION

Plants serve as food, ornaments, and habitats for many living things and are also used as treatment for ailments and diseases. However, some also contain toxic substances. Plants play a prominent role in the scientific field, especially in pharmaceutical sciences where drug discovery and development hugely utilize plant materials. Ayurveda, an Indian practice where plants are used in traditional medicine, posed certain drawbacks such as lack of literature sources in different languages and insufficient knowledge on the foundation of this traditional system that led to hindrance of its development [1].

Guettarda speciosa L. (Rubiaceae) is widely distributed in East and South Africa, Eastern Madagascar, India, Southeast Asia, the South Pacific, Eastern Australia, and the Southeastern coast of North America. It thrives along sea cliffs, beach thickets, tropical and sub-tropical areas, as well as land forests [2-4]. *G. speciosa* is one of the approximately 150 species from the genus *Guettarda* of the Rubiaceae family and it is the only *Guettarda* species that can be found in the Philippines [5-6].

G. speciosa grows up to a height of 12-25 m, its trunk reaches a diameter of 50 cm to 1 m, and its leaves measure about 5-20 cm long [7]. With its high cellulosic content and high maximum degradation temperature of 353.37 °C, these natural cellulose fibers can be used as alternative material to fabricate thermosetting polymer composites in the manufacturing and automobile industries [7].

Utilization of the root, bark, leaves, and flowers of *G. speciosa* can serve as treatments to various diseases like coughs, colds, seizures, wounds, and others. The tree is commonly grown as an ornamental plant and its flowers are used for extracting essential oils used in perfume preparations [8-9]. A recent study shows that *G. speciosa* has high salt tolerance ability in which it can be used for vegetation construction and ecological restoration of tropical islands [10].

To date, this is the first review paper that is organized systematically for both the phytochemical constituents and the corresponding structures from *G. speciosa*, as well as the pharmacological activities of the different plant parts and solvent extracts of *G. speciosa*. This review paper can serve as a basis for future research on *G. speciosa*.

Methodology

The databases such as PubMed, PubChem, ScienceDirect, Mendeley, ResearchGate, Google Scholar, SciFinder, and SpringerLink were used in obtaining data and information on *G. speciosa*. The structures were drawn using ChemDraw Professional 16.0 software. The keywords used in obtaining the references were "*Guettarda speciosa*," "phytochemicals," and "pharmacological activities." Some of the referenced articles were written in foreign languages such as French, Malaysian, and Indian, but English versions of publications were available and were utilized instead.

Fable 1. Phytochemic	al constituents of	f <i>Guettard</i>	la speciosa.
----------------------	--------------------	-------------------	--------------

Isolated Compound	Plant Part	Reference	
Alkaloids			
5α-carboxystrictosidine	Root Bark	[17]	
5α-carboxystrictosidinic acid	Root Bark		
Sickingine	Leaf	[16]	
Cadambine	Leaf		
Ester			
1-O-α-D-glucuronide 3-O-benzoyl ester	Leaf	[16]	
Glycosides			
Sweroside	Loof	[16]	
Quinovic glycoside C	Leal	[16]	
Iridoids			
Secologanin		[17]	
Loganic acid	Leaf		
Morroniside		[16]	
Megastigmane glycoside			
Guettardionoside	Leaf	[16]	
Sterol			
Ecdysone	Leaf	[16]	
Sugar			
D-glucuronic acid	Leaf	[16]	
Phenolic compounds			
5-O-caffeoylquinic acid		[17]	
4,5-di-O-caffeoylquinic acid			
3-O-caffeoylquinic acid		[17; 23]	
Icariside D1	Leaf	[16]	
3,4-di-O-caffeoylquinic acid			
Isoquercetin		[23]	
Quercetin 3-O-glucoside			
Flavonoids			
Quercetin rutinoside			
Quercetin 3-O-galactoside	Leaf	[23]	
Apigenin 7-O-glucuronide			

Guettardionoside1-O-α-D-glucuronide 3-O-benzoyl esterFigure 1. Four isolated novel compounds of Guettarda speciosa.

Figure 2. Identified and isolated compounds from Guettarda speciosa.

Ethnomedical Uses. G. speciosa is used as a traditional folk medicine in Southeast Asia, East Africa, and the South Pacific as anticholinergic, secondary amenorrhea treatments, and as remedies for inflammation, cough, fever, diarrhea, and maternal postpartum infection [2-3, 11-12]. In addition, G. speciosa has been utilized for the promotion of menstruation in traditional Fijian practices [12]. Traditional medical Indian practitioners use the ethanolic extract of the inner bark of G. speciosa to treat epilepsy [13]. The decoction of the leaves is used to treat coughs, colds, and sore throats [3]. In Tirunelveli District, India, the inner bark is being utilized as a traditional treatment of epilepsy [14]. The stem, bark, latex, flowers, fruits, and the whole plant are used to treat wounds in some countries. In Tahiti, the plant is used as antidiarrhoeic, febrifugal, and anticholinergic. In Tonga, the inner bark of the plant is used to treat epilepsy and conjunctivitis, and the same plant part is used to treat dysentery in New Guinea. The sap of the leaves is used to treat skin rashes in Micronesian practices. Ulcerated sores of the anus are treated with oil-washed shoots. The liquid gathered from the bark is consumed to treat edema [12]. Aside from being utilized in perfume preparations, the plant's wood, flowers, and leaves are also used to treat acne and allergies [9].

Phytochemistry of Guettarda speciosa

Identified phytochemical constituents of Guettarda speciosa. There are 23 isolated and identified compounds in *G. speciosa*. Among these compounds, four new phytochemical constituents were identified (Figure 1). The isolated compounds from different parts of *G. speciosa* (Table 1 and Figure 2) include alkaloids, an ester, glycosides, iridoids, a megastigmane glycoside, a sterol, phenolic compounds, and flavonoids.

Putative phytochemicals of Guettarda speciosa. There are 48 putative compounds using the ethanolic leaf extract that were identified in *G. speciosa* using gas chromatographymass spectrometry (GC-MS) (Table 2) [15]. The putative compounds belong to the following classes: alkaloids, phenolic compounds, fatty acids, flavonoids, glyceride, iridoid, terpenes, hydrocarbons, steroids, sterol, and esters. There are nine putative compounds identified in the leaf of *G. speciosa* (Table 3) using liquid chromatographymass spectrometry (LC-MS). However, sweroside and sickingine were already confirmed using chromatographic analysis of the root, bark and leaves of *G. speciosa* [16-17].

Pharmacological Activities Associated with Guettarda speciosa. Several biological studies involving crude polar solvent extracts of *G. speciosa* were conducted using its flowers, roots, leaves, and inner bark. The plant has been reported to have wound healing activity, antibacterial, antifungal, antiseizure and antiepileptic, hepatoprotective, antidiarrheal, anti-inflammatory, anti-neurodegenerative, anti-amyloidogenic, anti-ulcer, and antioxidant activities (Table 4).

The leaf ethanolic extract exhibited wound healing activity on a dose dependent manner with 10% w/w proving to have significant results [12]. Both the chloroform and ethanolic extracts of the inner bark of *G. speciosa* showed antifungal and antibacterial activities [18]. The ethanol extract of the inner bark also showed antiseizure and antidiarrheal activity in in vivo studies [2, 13-14, 19].

Ramos et al. | Acta Manilana 71 (2023)

Compound Class	Putative Compounds		
Alkaloids	Curan-17-oic acid, 19, 20-dihydroxy-, methyl ester, (19S)-		
	3-Phenyl-5-t-butylpyridazine		
	2-Acetyl-3-(2-cinnamido)ethyl-7-methoxyindole		
Phenolic Compounds	Lucenin 2		
	Phenol, 2,4-bis(1,1-dimethyl ethyl)		
	4H-1-Benzopyran-4-one, 2-(3,4-dimethoxyphenyl)-5,7-dihydroxy-		
Fatty Acids	Doconexent		
	Octadecanoic acid		
	Pentadecanoic acid		
	1-Eicosanol		
	1-Heptatriacotanol		
	2-Hexadecanol		
Flavonoids	5-Hydroxy-7,8,2',6'-tetramethoxyflavone		
	Quercetin 7,3',4'-Trimethoxy		
Glyceride	Docosanoic acid, 1,2,3-propanetriyl ester		
Iridoid	Isochiapin B		
Terpenes	Squalene		
	Quassin		
	Duvatrienediol		
	Cladosporide A		
	7,8-Epoxylanostan-11-ol, 3-acetoxy		
Hydrocarbons	Nonacosane		
	Undecane		
	Dodecane		
	Tetradecene		
	Dotriacontane		
	Hexadecane		
	2,6-Diisopropylnaphthalene		
	10-Ethyl-1,8-diphenyl-anthracene		
	Hexacosane		
	Rhodopin		
	1-Hexadecanol,2-methyl-		
Steroids	2-Methylcortisol		
	Ethyl iso-allocholate		
	Stigmasterol		
	Campesterol		
Sterol	6,7-Diaza-5á-cholesterol		
Esters	n-Butyl cinnamate		
	Fumaric acid, dodecyl 3-heptyl ester		
	2-Myristynoyl pantetheine		
	Hexadecanoic acid,1-(hydroxymethyl)-1,2- ethanediyl ester		
	Octadecanoic acid, 2,3-dihydroxypropyl ester		
	Hexadecanoic acid, ethyl ester		
	Oleic acid, eicosyl ester		
	Oxiranepentanoic acid, 3-undecyl-, methyl ester, cis-		
	8-hydroxysclerodin methyl ether		
	1,2-Benzenedicarboxylic acid, bis(2-methylpropyl) ester		
	Phytol, acetate		

 Table 2. Putative compounds from the leaves of Guettarda speciosa using GC-MS.

 Table 3. Putative compounds identified in Guettarda speciosa using LC-MS.

1 1 0			
Putative compound	Plant Part	Reference	
Strictosidine			
Loganin			
β-Sitosterol			
5-Caffeoylquinic acid			
Rotundic acid	Leaf	[3]	
4,5-Dicaffeoylquinic acid			
Quinovic acid			
Sickingine			
Sweroside			

Plant part	Activity	Extract	Assay/model	Reference
Inner bark	Antibacterial and	Chloroform and ethanol	In vitro disc diffusion method	[18]
Inner bark	Antiepileptic	Ethanol (95%)	In vivo Maximal Electroshock (MES) and Pentylenetetrazole (PTZ) using Wistar albino rats	[14]
Inner bark	Antiseizure	Ethanol (95%)	In vivo Maximal Electroshock (MES) and Pentylenetetrazole (PTZ) using Wistar albino rats	[13,19]
Inner bark	Antidiarrheal	Ethanol (90%)	In vivo castor oil-induced-diarrhea model using Wistar albino rats	[2]
Inner bark	Hepatoprotective	Methanol	In vivo CCl4-induced hepatotoxicity using Wistar albino rats	[20]
	Anti-inflammatory		In vitro Cyclooxygenase 1 (COX-1)	
Leaf	Cytotoxicity	Chloroform and methanol	In vitro ATP luminescence assay using SH-SY5Y cells	[3]
	Anti-amyloidogenic		In vitro Thioflavin T (ThT) assay	
Leaf	Wound healing	Ethanol	In vivo excision wound model using Wistar albino female rats	[12]
Leaf	Anti-ulcer	Ethanol	In vivo ethanol and pyloric ligation (PL) induced gastric ulcer model using Wis- tar albino rats	[21]
Leaf	Antioxidant	Aqueous	In vitro nitric oxide (NO) radical scav- enging assay	[22]
Stem and leaves	Anti-inflammatory	Methanol	In vivo acute Lung Injury (ALI) mouse model using male C57BL/6 mice	[23]
Unspecified plant part	Anti-inflammatory	Methanol	In vitro LPS-induced murine macro- phages RAW 264.7 cell model	[11]

 Table 4. Pharmacological activities of Guettarda speciosa.

The 95% ethanolic inner bark extract exhibited an increase in neurotransmitter (noradrenaline, dopamine, serotonin, and gamma-amino butyric acid) levels after induction of seizure via MES and PTZ model on Wistar albino rats [14]. The methanolic extract of the inner bark of the plant exhibited hepatoprotective activity against CCl4induced hepatotoxicity [20]. The chloroform and methanol leaf extracts showed antiinflammatory, cytotoxicity, and anti-amyloidogenic activities in in vitro assays. Moreover, the methanolic leaf extracts were safe up to 2000 mg/kg on Sprague-Dawley rats [3]. The methanol extract of unspecified plant part of G. speciosa exhibited anti-inflammatory activity in in vitro studies [11]. The ethanolic leaf extract of G. speciosa showed antiulcer activity in ethanolic and ligation gastric ulcer model [21]. The petroleum ether, chloroform, acetone, ethanol, and aqueous leaf extracts were tested for antioxidant activities. However, only the aqueous leaf extract showed antioxidant activity in in vitro nitric oxide scavenging assay [22]. The stem and leaf methanolic extracts exhibited antiinflammatory activity in in vivo studies [23]. Concentrations of 50 μ g/mL and 100 μ g/ mL of the methanolic extract of G. speciosa did not cause metabolic disarray or any significant reactive oxygen species (ROS) on RAW 264.7 cells [23].

Conclusion

G. speciosa has multiple uses ranging from industrial materials development, ornamental purposes and perfume, construction of vegetation and ecological restoration, and several treatments for diseases. The folkloric uses are consistent with the findings of several pharmacological studies of *G. speciosa*. All the references acquired for the pharmacological activities utilized polar solvent extracts. The leaves of *G. speciosa* exhibited the highest number of pharmacological activities. The flower part of *G. speciosa* is yet to be explored and future research could lead to interesting findings.

Acknowledgment

We express our gratitude to Miss Sarah Grace Zamudio for providing the *Guettarda speciosa* photograph in the Graphical Abstract.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Conceptualization – MAT; Methodology – RKR. The original draft was prepared by Ryan Karlo Ramos. The writing, reviewing, and editing of the paper were done by Ryan Karlo Ramos, Jameson Eusebio, and Mario Tan. All authors have read and agreed to the published version of the manuscript.

INSTITUTIONAL REVIEW BOARD STATEMENT

Not applicable.

References

- [1] Jaiswal YS & Williams LL. A glimpse of Ayurveda The forgotten history and principles of Indian traditional medicine. Journal of Traditional and Complementary Medicine 2017; 7(1), 50–53.
- [2] Gandhimathi R, Saravana Kumar A, Senthil Kumar KK, Kumar KP, & Uma Maheswari J. Pharmacological studies of anti-diarrhoeal activity of Guettarda speciosa (L.) in experimental animals. Journal of Pharmaceutical Sciences and Research 2009; 1, 61–66.
- [3] Tan MA, Lagamayo MWD, Alejandro GJD, & An SSA. Anti-Amyloidogenic and Cyclooxygenase Inhibitory Activity of Guettarda speciosa. Molecules 2019; 24, 4112.
- [4] Xu Y, Luo Z, Gao S, & Zhang D. Pollination niche availability facilitates colonization of Guettarda speciosa with heteromorphic self-incompatibility on oceanic islands. Scientific Reports 2018; 8, 13765.
- [5] Achille F, Motley TJ, Lowry PP, & Jérémie J. Polyphyly in Guettarda speciosa L. (Rubiaceae, Guettardeae) based on nrDNA ITS sequence data. Annals of the Missouri Botanical Garden 2006; 93(1), 103–121.
- [6] Alejandro GJD. The Current Status of the Philippine Rubiaceae. Philippine Journal of Systematic Biology. 2007, 1, 46–60.
- [7] Kumar KS, Vivekananthan M, Saravanakumar M, & Raj FS. Investigation of physico chemical, mechanical and thermal properties of the Guettarda speciosa bark fibers. Materials Today: Proceedings 2020; 37, 1845–1849.
- [8] Revathi D & Rajeswari M. Phytochemical analysis of Guettarda speciosa Linn. Asian Journal of Plant Science and Research 2015; 5, 1–4.
- [9] Saive M. Phytochemical study of plants used traditionally for cosmetics and medicine in the island of Mayotte. (PhD thesis) University of Liège Gembloux Agro-Bio Tech.
- [10] Li X, Liu D, Wang J, Jian J, & Shuguang, J. Morphological, biochemical and physiological responses of a tropical coastal plant Guettarda speciosa to salt stress. Global Ecology and Conservation 2021; 32, e01887.
- [11] Le H, Cho Y, & Cho S. Methanol extract of Guettarda speciosa Linn. inhibits the production of inflammatory mediators through the inactivation of Syk and JNK in macrophages. International Journal Molecular Medicine 2018; 41, 1783–1791.
- [12] Revathi D & Rajeswari M. Wound Healing Activity of Guettarda speciosa Linn. Indo American Journal of Pharmaceutical Sciences 2018; 5, 7896–7903.
- [13] Saravana Kumar A & Gandhimathi R. Effect of Guettarda speciosa extracts on antioxidant enzymes levels in rat brain after induction of seizures by MES and PTZ. Journal of Natural Products 2010; 3, 80–85.
- [14] Saravana Kumar A, & Gandhimathi R. Effect of Guettarda speciosa on biogenic amines concentrations in rat brain after induction of seizure. International Journal of Pharmacy and Pharmaceutical Sciences 2009; 1, 237–243.
- [15] Revathi D & Rajeswari M. Chemical Profiling of Guettarda speciosa Linn. by GC-MS. International Journal of Emerging Technology and Advanced Engineering 2015; 5, 114–118.

- [16] Cai WH, Matsunami K, Otsuka K, Shinzato T, & Takeda Y. A glycerol α-D-glucuronide and a megastigmane glycoside from the leaves of Guettarda speciosa L. Journal of Natural Medicines 2011; 65, 364–369.
- [17] W. Muangrom, M. Bacher, A. Berger, K. Valant-Vetschera, S. Vajrodaya, J. Schinnerl. A novel tryptophan-derived alkaloid and other constituents from Guettarda speciosa (Rubiaceae: Cinchonoideae–Guettardeae), Niochemical Systematics and Ecology, 2021, 65, 104239.
- [18] Thamizhvanan K, Pavan Kumar P, Bachala T, Madhu Mohan D, Krishnakishore P, & Praveen Kumar K. Anti-bacterial and anti-fungal activities of various extracts of Guettarda speciosa L. International Journal of Phytopharmacology 2010; 1, 20–22.
- [19] Arumugam S, Palanivelu A, Retnasamy G, & Ramaiyan D. Study on the Antiseizure Activities of Inner Bark of Guettarda Speciosa (L.). Iranian Journal of Pharmacology and Therapeutics 2009; 8(2), 73–76.
- [20] Vennela Priya P & Saravanakumar A. Hepatoprotective Activity of Guettarda speciosa L. against carbon tetrachloride (CCl4)-induced hepatotoxicity in Wistar Albino rats. International Journal of Phytopharmacology 2017; 8, 60–70.
- [21] Sunil Kumar Reddy T, Saravana A, Gandhimathi R. Evaluate the antiulcerogenic properties of Guettarda speciosa (L.). International Journal of Biopharmaceutics, 2010; 1, 1–6.
- [22] Revathi D & Rajeswari M. In Vitro Evaluation of Nitric Oxide Scavenging Activity of Guettarda speciosa Linn. International Journal of Science and Research 2013; 4, 962–965.
- [23] Kim KH, Lee JY, Ahn S, Won R, Kim SJ, Jeong S, Lee JJ, Kim JI, Choi JY, & Joo M. The methanol extract of Guettarda speciosa Linn. ameliorates acute lung injury in mice. BMC Complementary Medicine and Therapies 2020; 20, 40.